Abstract:
A process control system controls a non-self regulating process through a control output signal based on a set point and a measured process variable. The process control system includes a control circuit having a set point input, a process variable input and a control output. The control circuit generates the control output signal on the control output as a function of the set point received on the set point input and the measured process variable received on the process variable input. An auto-tuning circuit excites the process, estimates a process model based on an intersection between rising and falling asymptotes of the measured process variable, and then tunes the control function to the process based on the process model. The auto-tuning circuit obtains robust results, but is computationally simple such that the circuit can be implemented with hardware or software in low-power and low-memory applications, such as in field-mounted controllers.
Abstract:
An integrator circuit cancels a DC offset component related to an average DC value of a burst mode input signal from the output of an amplifier. The integrator circuit outputs an average DC value of the input signal in a response time that is shorter than the preamble of a burst mode signal. The integrator output signal remains stable within selected amplitude limits for a length of time corresponding to the data portion of a burst mode signal. A transimpedance amplifier embodiment of the invention comprises a TIA gain stage, an integrator, and a voltage-controlled current course. Other embodiments comprise an amplifier for converting single-ended input signals to differential output signals, an amplifier for differential output offset cancellation, a monolithic semiconductor integrated circuit die, and a packaged semiconductor integrated circuit device.
Abstract:
An integrator circuit cancels a DC offset component related to an average DC value of a burst mode input signal from the output of an amplifier. The integrator circuit outputs an average DC value of the input signal in a response time that is shorter than the preamble of a burst mode signal. The integrator output signal remains stable within selected amplitude limits for a length of time corresponding to the data portion of a burst mode signal. A transimpedance amplifier embodiment of the invention comprises a TIA gain stage, an integrator, and a voltage-controlled current course. Other embodiments comprise an amplifier for converting single-ended input signals to differential output signals, an amplifier for differential output offset cancellation, a monolithic semiconductor integrated circuit die, and a packaged semiconductor integrated circuit device.
Abstract:
The invention relates to amplifiers and in particular, to a transimpedance amplifier for high rate applications. Disclosed is a two stage transimpedance amplifier having a first stage comprising an amplifier and a load and a second stage comprising an amplifier and a resistor. Negative feedback is provided through a feedback resistor. Only two voltage conversions occur which reduces phase distortion, as compared to three stage transimpedance amplifiers which perform 3 voltage conversions.
Abstract:
The invention relates to amplifiers and in particular, to a transimpedance amplifier for high rate applications. Disclosed is a two stage transimpedance amplifier having a first stage comprising an amplifier and a load and a second stage comprising an amplifier and a resistor. Negative feedback is provided through a feedback resistor. Only two voltage conversions occur which reduces phase distortion, as compared to three stage transimpedance amplifiers which perform 3 voltage conversions.
Abstract:
A process control system controls a process through a control output signal based on a set point and a measured process variable. The process control system includes a control circuit having a set point input, a process variable input and a control output. The control circuit generates the control output signal on the control output as a function of the set point received on the set point input and the measured process variable received on the process variable input. An auto-tuning circuit excites the process, estimates a process model based on a rising dead time, a rising rate-of-change, a falling dead time and a falling rate-of-change in the measured process variable and then tunes the control function to the process based on the process model. The auto-tuning circuit obtains robust results, but is computationally simple such that the circuit can be implemented with hardware or software in low-power and low-memory applications, such as in such in field-mounted control units.
Abstract:
A process controller controls an integrating-type process based on a measured process variable and a set point. The process controller includes an error generating circuit, a non-integrating control circuit and an adaptive bias circuit. The error generating circuit generates an error signal based on a difference between the set point and the measured process variable. The control circuit generates a control signal as a function of the error signal. The adaptive bias circuit adds a bias value to the control signal, the measured process variable or the set point. The bias value is selectively updated as a function of the error signal to force the error signal toward zero.