Abstract:
A vehicle cab suspension is provided with a body having a mounting member positioned at least partially within the body. One or more resilient members connect the body to the mounting member and are placed in a compressed condition between the body and the mounting member when the vehicle cab suspension is in an unloaded condition. The body may be formed of first and second body pieces, each of which may be provided with upper and/or lower projections to restrict movement of the resilient members during use.
Abstract:
A steering knuckle (18) is provided for use in association with a vehicle steering assembly (10). The steering knuckle (10) includes a knuckle body (20) having a generally vertical face (26) and an upper yolk arm (22) having a generally vertical face (54). The generally vertical faces (26, 54) of the steering knuckle body (20) and the upper yolk arm (22) are connected to each other. The generally vertical face (54) of the upper yolk arm (22) includes a camshaft bore (62) extending therethrough and configured to receive a camshaft (64). The generally vertical face of the knuckle body may be welded to a spindle (24), with a portion of the spindle being cut away to allow for a complete circular weld between the knuckle body and the spindle.
Abstract:
A vehicle cab suspension is provided with a body having a mounting member positioned at least partially within the body. One or more resilient members connect the body to the mounting member and are placed in a compressed condition between the body and the mounting member when the vehicle cab suspension is in an unloaded condition. The body may be formed of first and second body pieces, each of which may be provided with upper and/or lower projections to restrict movement of the resilient members during use.
Abstract:
A lift axle suspension system is provided with a frame bracket member connectable to a vehicle frame, an upper control arm, and a lower control arm. Each control arm has a first end and a second end, with the first end of each control arm being pivotally connected to the frame bracket member. The suspension system also includes an axle connecting member connectable to an axle, with the second end of each control arm being pivotally connected to the axle connecting member. A compression coil spring having a first end connected to the lower control arm and a second end connected to the upper control arm serves as a lift mechanism for lifting and lowering the axle connected to the axle connecting member. The compression coil spring may encircle at least a portion of and be substantially coaxial with the lower control arm.
Abstract:
A lift axle suspension system is provided with a frame bracket member connectable to a vehicle frame, an upper control arm, and a lower control arm. Each control arm has a first end and a second end, with the first end of each control arm being pivotally connected to the frame bracket member. The suspension system also includes an axle connecting member connectable to an axle, with the second end of each control arm being pivotally connected to the axle connecting member. A compression coil spring having a first end connected to the lower control arm and a second end connected to the upper control arm serves as a lift mechanism for lifting and lowering the axle connected to the axle connecting member. The compression coil spring may encircle at least a portion of and be substantially coaxial with the lower control arm.