摘要:
A method includes receiving into a computer processor a building control subsystem design drawing, and identifying a plurality of objects in the building control subsystem design drawing by comparing the objects to a template of objects. The template of objects includes one or more of a representation of a shape, a color, and a texture. A physical relationship among the plurality of objects is determined, and a three dimensional representation of the plurality of objects is retrieved from a three dimensional device library. A three dimensional building control subsystem graphic is generated by mapping the three dimensional representation of the plurality of objects into a three dimensional user interface as a function of the physical relationship. The three dimensional user interface is animated and interactive to monitor and control a building subsystem.
摘要:
A method includes receiving into a computer processor a building control subsystem design drawing, and identifying a plurality of objects in the building control subsystem design drawing by comparing the objects to a template of objects. The template of objects includes one or more of a representation of a shape, a color, and a texture. A physical relationship among the plurality of objects is determined, and a three dimensional representation of the plurality of objects is retrieved from a three dimensional device library. A three dimensional building control subsystem graphic is generated by mapping the three dimensional representation of the plurality of objects into a three dimensional user interface as a function of the physical relationship. The three dimensional user interface is animated and interactive to monitor and control a building subsystem.
摘要:
A formal ontology includes multiple context elements to describe elements and their context within a system in the domain. The structure includes multiple role functions to describe the function of elements in the system, multiple types to describe values being provided by the elements in the system, and multiple states to describe states of the elements in the system, wherein the context elements, role functions, types, and states are selectable to provide a full description of the system.
摘要:
Methods, systems, and computer-readable medium are provided for constructing multi-dimensional data models for distribution networks. Geometric features are extricated from a 2D representation of a distribution network comprising a plurality of objects having a relationship to each other within a network. Distribution network elements are generated from the geometric elements according to a network distribution model. The distribution network elements comprise objects and components of the network and include semantic information on associated attributes and relationships thereof. The distribution network element(s) can be validated using rules to detect errors in the generation of the distribution network element(s). The distribution networks element(s) can be refined and a multi-dimensional digital model constructed from the distribution network elements according to the distribution network model.
摘要:
A method of route retrieval is provided comprising initializing a first weighted graph, converting a blueprint of an area into a weighted graph, updating the weighted graph in real time, and calculating an optimal route in the area.
摘要:
A method of route retrieval is provided comprising initializing a first weighted graph, converting a blueprint of an area into a weighted graph, updating the weighted graph in real time, and calculating an optimal route in the area.
摘要:
A method and system of generating a 3D geometric object model for a domain. The method includes: extracting basic geometric elements from an input source; converting the basic geometric elements into domain elements according to a domain model, wherein the domain elements preserve semantic information of their attributes and relationships defined by the domain model; and constructing a 3D geometric model, including 3D geometric objects, from the domain elements by geometric operators according to the domain model, wherein the 3D geometric objects maintain the semantic information of the domain elements, and the semantic information is allowed to be defined in a level of the objects.
摘要:
A system displays a raster-based or a vector-based formatted drawing on a user interface. A user selects a device on the drawing. The selected device is classified on a template. The drawing is searched for the classified template. Three-dimensional characteristics are imbued to the selected device. Connection types among different types of devices on the drawing are received into the system. A search is performed for all connection instances throughout the drawing using the received connection types. An object oriented and three-dimensionally, spatially referenced view of the drawing is generated on a user interface.
摘要:
A system displays a raster-based or a vector-based formatted drawing on a user interface. A user selects a device on the drawing. The selected device is classified on a template. The drawing is searched for the classified template. Three-dimensional characteristics are imbued to the selected device. Connection types among different types of devices on the drawing are received into the system. A search is performed for all connection instances throughout the drawing using the received connection types. An object oriented and three-dimensionally, spatially referenced view of the drawing is generated on a user interface.
摘要:
Described herein are systems and methods for presenting building information. In overview, the technologies described herein provide relationships between Building Information Modeling (BIM) data (which includes building schematics defined in terms of standardized three dimensional models) and Building Management System (BMS) data (which includes data indicative of the operation of building components such as HVAC components and the like). Some embodiments use relationships between these forms of data thereby to assist technicians in identifying the physical location of particular pieces of equipment, for example in the context of performing inspections and/or maintenance. In some cases this includes the provision of 2D and/or 3D maps to portable devices, these maps including the location of equipment defined both in BIM and BMS data. In some cases, augmented reality technology is applied thereby to provide richer access to positional information.