摘要:
A device for monitoring a test subject includes a light source and at least one optical waveguide configured for at least one of directing light from the light source onto a biological substrate and receiving the light directed onto the biological substrate. The device also includes a sensor operable to detect the light received, a logic component operable to analyze the light detected by the sensor, an output component operable to convey information from the logic component to a user of the device, and a housing containing the light source, the sensor, the logic component, and the output component, where the at least one optical waveguide forms at least one bristle extending outside of the housing.
摘要:
Provided is a focus device for a camera. The focus device moves an image sensor toward, or away from, the incoming light of an image according to commands received from a processor/controller. The focus device includes an actuator for inducing movement of the image sensor, and a position sensor for measuring the distance moved. In one embodiment, the actuator is a voice coil actuator comprising a plurality of magnets and a coil winding. In an alternate embodiment, the actuator is a piezo-bimorph actuator of a type well known in the art. Operation of the actuator is controlled by the processor/controller. Further, the resulting measurement data from the position sensor is used by one or more focusing algorithms in the camera to focus the image.
摘要:
Apparatus, printers, and methods to remove material from a printer surface are disclosed. An example apparatus includes a fluid remover to remove printing material from a printer surface, and a coating material reservoir to store coating material and to apply the coating material to the fluid remover to reduce an amount of printing material transferred to the fluid remover from the printer surface.
摘要:
A printing system (30, 40, 40′, 50, 50′) includes at least one ejector coupled to a reservoir (38) that is configured to contain a printing composition including a hydrocarbon having at least one unsaturated bond. The hydrocarbon is configured to at least one of polymerize or crosslink in the presence of a reactive species. The at least one ejector is configured to eject the printing composition onto a surface (34, 36, 10). The system (30, 40, 40′, 50, 50′) further includes a corona generator (32, 32′, 32″, 32′″) configured to generate the reactive species in situ. The corona generator (32, 32′, 32″, 32′″) is positioned with respect to the reservoir (38) such that the reactive species is exposed to the printing composition after the printing composition has been ejected onto the surface (34, 36, 10). The polymerizing and/or the cross-linking of the hydrocarbon is configured to form a polymer matrix (12) from the ejected printing composition.
摘要:
With a card including a passive electronic paper display configured to display a visual image, a method of presenting information on a card includes selectively changing a visual image displayed on the passive electronic paper display to update information represented by the visual image, and wherein the card is sized to be carried by a user.
摘要:
Printers, methods, and apparatus to reduce aerosol are disclosed. An example apparatus to reduce aerosol includes a print head (102) to generate droplets (314-320) and aerosol (322-326), and to direct the droplets (314-320) toward a print substrate (104), a first corona wire (108) to generate first ions (340, 344) having a first electrical polarity to direct the aerosol (322-326) toward the print substrate (104), and a second corona wire (110) to generate second ions (340, 344) to direct the aerosol (322-326) toward the print substrate (104), wherein the second ions (340, 344) have a second electrical polarity that is opposite the first electrical polarity.
摘要:
An imaging device can include an imaging drum to support a carrier fluid. A roller can remove a portion of the carrier fluid from the imaging drum. A fluid container can collect the carrier fluid from the roller. A fluid remover on the container can be used to remove the carrier fluid from the roller.
摘要:
The present disclosure is drawn to an oil-based ink jet ink comprising a non-aqueous, oil-based liquid vehicle having a conductivity of less than less than 50 pS/cm; from 3 wt % to 12 wt % of a pigment; from 0.5 wt % to 6 wt % of a dispersant; and from 0.001 wt % to 0.5 wt % of a high molecular weight polymer that is partially or fully solubilized in the liquid vehicle, and having a weight average molecular weight from 50,000 to 5,000,000 Mw.
摘要:
Printhead fabrication methods and printheads are described. According to one aspect, a printhead fabrication method includes providing a spacer layer 36 over a plurality of bottom electrodes 10 of a printhead, providing a plurality of top electrodes 26 of the printhead over the spacer layer 36 and the bottom electrodes 10, aligning a plurality of printhead features 38 of the spacer layer 36 with a plurality of printhead features 28, 16 of the top electrodes 26 and the bottom electrodes 10, and bonding the spacer layer 36 with the top electrodes 26 and the bottom electrodes 10 with the printhead features 38 of the spacer layer 36 aligned with the printhead features 28, 16 of the top electrodes 26 and the bottom electrodes 10.
摘要:
The present disclosure is drawn to methods, devices, and systems for determining solid content of inks, including a device comprising a chamber configured to hold an ink sample having ionic particulates in a liquid vehicle, a first opening in the chamber for filling the chamber with the ink sample, a second distinct opening in the chamber for removal of the liquid vehicle, a deposition electrode at least partially defining the chamber, a counter electrode, a power supply connected to the deposition electrode and the counter electrode for creating an electric field inside the chamber, and a densitometer optically coupleable to the deposition electrode for measuring the optical density of ionic particulates. Additionally, the device can be operable to separate the ionic particulates from the liquid vehicle by deposition of the ionic particulates at the deposition electrode and/or the device can be operable to measure the optical density of the ionic particulates after migration to the deposition electrode.