摘要:
In a vacuum treatment system for applying thin layers to substrates (2, 2', . . . ) such as headlight reflectors, with several treatment (8, 9, 10) and/or inward and outward transfer lock stations (20) supported on a stationary vacuum chamber wall (16, 16', . . . ) and with a rotatably supported internal cylinder (14), which is enclosed by the vacuum chamber wall and carries the substrate chambers (3-6), openings (24-27) are provided in the vacuum chamber wall (16, 16', . . . ), with which the substrate chambers (3-6) can be aligned and through which the treatment agents can be allowed to act on the substrates (2, 2', . . . ) and/or through which the substrates can be transferred in and out, where one of the substrate chambers, but at least the inward/outward transfer lock chamber (20), has as cover or a sealing flap (33), which allows direct access to the corresponding substrate chamber, and where the chamber (20) can be shifted (A, B) toward the internal cylinder (14) and pressed against the outside wall of the cylinder (14) or against the frame-like end surface of the substrate chamber (3).
摘要:
In an apparatus for the coating of substrates in a vacuum with rotatable substrate carriers (15,16,20) and with a loading and an unloading station (8 or 9), two vacuum chambers (3,4) are provided with several coating stations (6,7 or 10 to 14), directly next to one another, wherein a rotatable transport arm (15 or 16) is accommodated in each of the two chambers (3, 4), and the transport planes of the two transport arms (15,16) are aligned with one another. In the separation area of the two chambers (3,4), an air lock is provided with a corresponding transfer apparatus (5) with two transport arms (15,16), whose rotary plate (20) is provided with substrate storage unit (21,22) and projects about halfway into one chamber (3) and halfway into the other chamber (4), wherein one chamber (3) has both the loading as well as the unloading station (8 or 9).
摘要:
A treatment chamber (1) evacuable by vacuum pumps (13,13') has a mounting (26,26', . . .) bearing the hollow body (4) in the treatment chamber (1), and a line (9,9') for the admission of a process gas into the treatment chamber (1). A microwave conductor (20,20' . . .) is connected with a generator (19,19' . . .) for igniting a plasma in the area of channels formed by a sheet-metal shroud (2,2') matching the configuration of the hollow body (4). A closure (7,7') is provided through which the filler opening (6, 6') of the hollow body (4) can be closed pressure-tight, and a line (9,9') for the process gas passes through the closure.