Abstract:
The present disclosure is drawn to a thermal inkjet printhead stack with an amorphous thin metal protective layer, comprising an insulated substrate, a resistor applied to the insulated substrate, a resistor passivation layer applied to the resistor, and an amorphous thin metal protective layer applied to the resistor passivation layer. The amorphous thin metal protective layer can comprise from 5 atomic % to 90 atomic % of a metalloid of carbon, silicon, or boron. The film can also include a first and second metal, each comprising from 5 atomic % to 90 atomic % of titanium, vanadium, chromium, cobalt, nickel, zirconium, niobium, molybdenum, rhodium, palladium, hafnium, tantalum, tungsten, iridium, or platinum. The second metal is different than the first metal, and the metalloid, the first metal, and the second metal account for at least 70 atomic % of the amorphous thin metal protective layer.
Abstract:
An amorphous thin metal film can include a combination of metals or metalloids including: 5 at % to 74 at % of a metalloid selected from the group of carbon, silicon, and boron; 5 at % to 74 at % of a first metal; 5 at % to 74 at % of a second metal; and 5 at % to 70 at % of a dopant. The first and second metals can be independently selected from the group of titanium, vanadium, chromium, iron, cobalt, nickel, zirconium, niobium, molybdenum, ruthenium, rhodium, palladium, hafnium, tantalum, tungsten, osmium, iridium, or platinum, wherein the first metal and the second metal can be different metals. The dopant can be selected from the group of oxygen, nitrogen, or combinations thereof. The metalloid, first metal, second metal, and dopant can account for at least 70 at % of the amorphous thin metal film.
Abstract:
An amorphous thin metal film can comprise a combination of three metals or metalloids including: 5 at % to 90 at % of a metalloid selected from the group of carbon, silicon, and boron; 5 at % to 90 at % of a first metal selected from the group of titanium, vanadium, chromium, iron, cobalt, nickel, zirconium, niobium, molybdenum, ruthenium, rhodium, palladium, hafnium, tantalum, tungsten, osmium, iridium, and platinum; and 1 at % to 90 at % of cerium. The three elements may account for at least 50 at % of the amorphous thin metal film.
Abstract:
An amorphous thin metal film can comprise a combination of three metals or metalloids including: 5 at % to 90 at % of a metalloid selected from the group of carbon, silicon, and boron; 5 at % to 90 at % of a first metal selected from the group of titanium, vanadium, chromium, iron, cobalt, nickel, zirconium, niobium, molybdenum, ruthenium, rhodium, palladium, hafnium, tantalum, tungsten, osmium, iridium, and platinum; and 1 at % to 90 at % of cerium. The three elements may account for at least 50 at % of the amorphous thin metal film.
Abstract:
An amorphous thin metal film can include a combination of metals or metalloids including: 5 at % to 74 at % of a metalloid selected from the group of carbon, silicon, and boron; 5 at % to 74 at % of a first metal; 5 at % to 74 at % of a second metal; and 5 at % to 70 at % of a dopant. The first and second metals can be independently selected from the group of titanium, vanadium, chromium, iron, cobalt, nickel, zirconium, niobium, molybdenum, ruthenium, rhodium, palladium, hafnium, tantalum, tungsten, osmium, iridium, or platinum, wherein the first metal and the second metal can be different metals. The dopant can be selected from the group of oxygen, nitrogen, or combinations thereof. The metalloid, first metal, second metal, and dopant can account for at least 70 at % of the amorphous thin metal film.
Abstract:
An amorphous thin film stack can include a first layer including a combination metals or metalloids including: 5 at % to in 90 at % of a metalloid; 5 at % to 90 at % of a first metal and a second metal independently selected from titanium, vanadium, chromium, iron, cobalt, nickel, niobium, molybdenum, ruthenium, rhodium, palladium, tantalum, tungsten, osmium, iridium, or platinum. The three elements may account for at least 70 at % of the amorphous thin film stack. The stack can further include a second layer formed on a surface of the first layer. The second layer can be an oxide layer, a nitride layer, or a combination thereof. The second layer can have an average thickness of 10 angstroms to 200 microns and a thickness variance no greater than 15% of the average thickness of the second layer.