摘要:
There is provided an inexpensive light emitting device and an electronic instrument using the same. In this invention, photolithography steps relating to manufacture of a transistor are reduced, so that the yield of the light emitting device is improved and the manufacturing period thereof is shortened. A feature is that a gate electrode is formed of conductive films of plural layers, and by using the selection ratio of those at the time of etching, the concentration of an impurity region formed in an active layer is adjusted.
摘要:
There has been a problem that the manufacturing process is complicated and the number of processes is increased when a TFT with an LDD structure or a TFT with a GOLD structure is formed. In a method of manufacturing a semiconductor device, after low concentration impurity regions (24, 25) are formed in a second doping process, a width of the low concentration impurity region which is overlapped with the third electrode (18c) and a width of the low concentration impurity region which is not overlapped with the third electrode can be freely controlled by a fourth etching process. Thus, in a region overlapped with the third electrode, a relaxation of electric field concentration is achieved and then a hot carrier injection can be prevented. And, in the region which is not overlapped with the third electrode, the off-current value can be suppressed.
摘要:
In the fabrication of semiconductor devices such as active matrix displays, the need to pattern resist masks in photolithography increases the number of steps in the fabrication process and the time required to complete them and consequently represents a substantial cost. This invention provides a method for forming an impurity region in a semiconductor layer 303 by doping an impurity element into the semiconductor layer self-aligningly using as a mask the upper layer (a second conducting film 306) of a gate electrode formed in two layers. The impurity element is doped into the semiconductor layer through the lower layer of the gate electrode (a first conducting film 305), and through a gate insulating film 304. By this means, an LDD region 313 of a GOLD structure is formed in the semiconductor layer 303.
摘要:
In the fabrication of semiconductor devices such as active matrix displays, the need to pattern resist masks in photolithography increases the number of steps in the fabrication process and the time required to complete them and consequently represents a substantial cost. This invention provides a method for forming an impurity region in a semiconductor layer 303 by doping an impurity element into the semiconductor layer self-aligningly using as a mask the upper layer (a second conducting film 306) of a gate electrode formed in two layers. The impurity element is doped into the semiconductor layer through the lower layer of the gate electrode (a first conducting film 305), and through a gate insulating film 304. By this means, an LDD region 313 of a GOLD structure is formed in the semiconductor layer 303.
摘要:
In the fabrication of semiconductor devices such as active matrix displays, the need to pattern resist masks in photolithography increases the number of steps in the fabrication process and the time required to complete them and consequently represents a substantial cost. This invention provides a method for forming an impurity region in a semiconductor layer 303 by doping an impurity element into the semiconductor layer self-aligningly using as a mask the upper layer (a second conducting film 306) of a gate electrode formed in two layers. The impurity element is doped into the semiconductor layer through the lower layer of the gate electrode (a first conducting film 305), and through a gate insulating film 304. By this means, an LDD region 313 of a GOLD structure is formed in the semiconductor layer 303.
摘要:
There is provided an inexpensive light emitting device and an electronic instrument using the same. In this invention, photolithography steps relating to manufacture of a transistor are reduced, so that the yield of the light emitting device is improved and the manufacturing period thereof is shortened. A feature is that a gate electrode is formed of conductive films of plural layers, and by using the selection ratio of those at the time of etching, the concentration of an impurity region formed in an active layer is adjusted.
摘要:
In the fabrication of semiconductor devices such as active matrix displays, the need to pattern resist masks in photolithography increases the number of steps in the fabrication process and the time required to complete them and consequently represents a substantial cost. This invention provides a method for forming an impurity region in a semiconductor layer 303 by doping an impurity element into the semiconductor layer self-aligningly using as a mask the upper,layer (a second conducting film 306) of a gate electrode formed in two layers. The impurity element is doped into the semiconductor layer through the lower layer of the gate electrode (a first conducting film 305), and through a gate insulating film 304. By this means, an LDD region 313 of a GOLD structure is formed in the semiconductor layer 303.
摘要:
There has been a problem that the manufacturing process is complicated and the number of processes is increased when a TFT with an LDD structure or a TFT with a GOLD structure is formed. In a method of manufacturing a semiconductor device, after low concentration impurity regions (24, 25) are formed in a second doping process, a width of the low concentration impurity region which is overlapped with the third electrode (18c) and a width of the low concentration impurity region which is not overlapped with the third electrode can be freely controlled by a fourth etching process. Thus, in a region overlapped with the third electrode, a relaxation of electric field concentration is achieved and then a hot carrier injection can be prevented. And, in the region which is not overlapped with the third electrode, the off-current value can be suppressed.
摘要:
It is an object to provide an user identity authentication system and an user identity authentication method with the Internet and a mobile information communication device. The mobile information communication device includes a liquid crystal device with a built-in image sensor. The image sensor reads individual information of a user, and user's identity is authenticated based on the individual information. A result of the authentication is unicast via the Internet. Alternatively, it is judged whether or not the result of the authentication is required to be unicast in accordance with a degree of requirement preset in the mobile information communication device or a destination terminal of communication, and the result is unicast via the Internet only when needed.
摘要:
Conventionally, when a TFT provided with an LDD structure or a TFT provided with a GOLD structure is to be formed, there is a problem in that the manufacturing process becomes complicated, which leads to the increase in the number of steps. An electrode formed of a lamination of a first conductive layer (18b) and a second conductive layer (17c), which have different widths from each other, is formed. After the first conductive layer (18b) is selectively etched to form a first conductive layer (18c), a low concentration impurity region (25a) overlapping the first conductive layer (18c) and a low concentration impurity region (25b) not overlapping the first conductive layer 18c are formed by doping an impurity element at a low concentration.