摘要:
A process of the present invention for producing a hydrotreated gas oil has a step for obtaining a product oil having a total aromatic content of 3% by volume or less by hydrogenating a hydrotreated oil including 95% by volume or more of fraction having a boiling point range of 150-380° C., a sulfur content of 2-15 ppm by mass, a total aromatic content of 10-25% by volume, and a naphthene of 20-60% by volume in the presence of a hydrogenation catalyst; and a step for obtaining, by hydrogenating the above-described product oil in the presence of a hydrogenation catalyst containing a crystalline molecular sieve component, a product oil satisfying the conditions that the content of petroleum fraction having a boiling point range of lower than 150° C. is 16% by volume or less, and the sum of the total aromatic content and the total naphthene content is 80% or less relative to the sum of these in the hydrotreated oil.
摘要:
The gas oil fraction hydrotreatment process of the invention is characterized by using a hydrorefined petroleum-based hydrocarbon oil with a sulfur content of 5-15 ppm by mass, a total aromatic content of 10-25% by volume and a boiling point range of 150-380° C. as the feed oil and subjecting the feed oil to hydrotreatment in the presence of a hydrogenation catalyst to obtain an ultralow sulfur and low aromatic gas oil fraction having a sulfur content of not greater than 1 ppm by mass and a total aromatic content of not greater than 1% by volume. This hydrotreatment process allows production of a “zero sulfur” and “zero aromatic” gas oil fraction in an efficient and reliable manner without provision of special operating conditions or equipment investment.
摘要:
The gas oil fraction hydrotreatment process of the invention is characterized by using a gas oil fraction with a sulfur content of 0.8-2% by mass and a total aromatic content of 20-35% by volume as the feed oil and subjecting the feed oil to hydrotreatment in the presence of a hydrogenation catalyst comprising at least one metal from among Group 6A metals and at least one metal from among Group 8 metals as active metals, and under reaction conditions with a reaction temperature of 330-390° C., a hydrogen partial pressure of 12-20 MPa and a liquid hourly space velocity of 0.1-1 h−1, to obtain an ultralow sulfur and low- aromatic gas oil fraction having a sulfur content of not greater than 1 ppm by mass and a total aromatic content of not greater than 1% by volume. This hydrotreatment process allows production of a “zero sulfur” and “zero aromatic” gas oil fraction in an efficient and reliable manner without provision of special operating conditions or equipment investment.
摘要:
For shortening the starting time of an autothermal reformer, the autothermal reformer is started by a method comprising: a first preheating step of heating a reforming catalyst up to a predetermined temperature with use of heating means, the heating means being positioned upstream of the reforming catalyst to heat the reforming catalyst; a second preheating step of stopping the heating after arrival at the predetermined temperature, feeding vaporized fuel and air to the reforming catalyst at the predetermined temperature, allowing the fuel to be oxidized by the reforming catalyst and thereby heating the reforming catalyst; and a starting step of also supplying steam to the reforming catalyst heated by the second preheating step and starting autothermal reforming under the condition for a steady state.
摘要:
The indirect internal reforming solid oxide fuel cell system includes an indirect internal reforming solid oxide fuel cell that has a first reformer which produces a reformed gas from a hydrocarbon-based fuel by using a steam reforming reaction, a solid oxide fuel cell which generates electric power by using the reformed gas obtained in the first reformer, and a container which houses the first reformer and the solid oxide fuel cell, the first reformer being disposed in a position to receive heat radiation from the solid oxide fuel cell; a second reformer which is disposed outside the container and produces a reformed gas by reforming a hydrocarbon-based fuel; and a line which leads the reformed gas obtained in the second reformer from the second reformer to an anode of the solid oxide fuel cell.
摘要:
The indirect internal reforming solid oxide fuel cell system includes an indirect internal reforming solid oxide fuel cell that has a first reformer which produces a reformed gas from a hydrocarbon-based fuel by using a steam reforming reaction, a solid oxide fuel cell which generates electric power by using the reformed gas obtained in the first reformer, and a container which houses the first reformer and the solid oxide fuel cell, the first reformer being disposed in a position to receive heat radiation from the solid oxide fuel cell; a second reformer which is disposed outside the container and produces a reformed gas by reforming a hydrocarbon-based fuel; and a line which leads the reformed gas obtained in the second reformer from the second reformer to an anode of the solid oxide fuel cell.
摘要:
A fuel injector comprises, a fuel flow adjustment throttle for determining a flow rate of a fuel passing through the fuel injector, a first member having a cylindrical surface for defining partially the fuel flow adjustment throttle, and a second member including a first surface and a second surface both of which extend toward the first member and join each other at a pointed edge defining the fuel flow adjustment throttle together with the cylindrical surface of the first member, and at least one of which forms a space expanding gradually in a fuel flow direction.
摘要:
For shortening the starting time of an autothermal reformer, the autothermal reformer is started by a method comprising: a first preheating step of heating a reforming catalyst up to a predetermined temperature with use of heating means, the heating means being positioned upstream of the reforming catalyst to heat the reforming catalyst; a second preheating step of stopping the heating after arrival at the predetermined temperature, feeding vaporized fuel and air to the reforming catalyst at the predetermined temperature, allowing the fuel to be oxidized by the reforming catalyst and thereby heating the reforming catalyst; and a starting step of also supplying steam to the reforming catalyst heated by the second preheating step and starting autothermal reforming under the condition for a steady state.
摘要:
There are provided an SOFC system using kerosene as a reforming raw material, the SOFC system being capable of effectively cooling the cell and capable of being stably operated with no decreased efficiency, and an operating method thereof. The solid oxide fuel cell system includes reforming means for reforming kerosene to obtain a reformed gas, a methanation catalyst layer disposed downstream of the reforming means and capable of promoting a methanation reaction, cooling means for cooling the methanation catalyst layer, and a solid oxide fuel cell disposed downstream of the methanation catalyst layer. The operating method of a solid oxide fuel cell system includes reforming kerosene to obtain a reformed gas, performing a methanation reaction to increase a methane amount in the reformed gas, and supplying a gas obtained in the methanation to a solid oxide fuel cell.
摘要:
An indirect inside reforming SOFC system that enables elimination of the use of hydrogen storage equipment for anode protection at start-up, etc. There is provided an indirect inside reforming solid oxide fuel cell comprising a first reformer for producing a reformate gas from a hydrocarbon fuel with the use of steam reforming reaction; a solid oxide fuel cell for power generation from the reformate gas obtained by the first reformer; and a container for housing both of the first reformer and the solid oxide fuel cell, wherein the first reformer is disposed at a position receiving heat radiation from the solid oxide fuel cell. Further, there is provided an indirect inside reforming solid oxide fuel cell system comprising the indirect inside reforming solid oxide fuel cell and further comprising a second reformer for reforming a hydrocarbon fuel to thereby produce a reformate gas, disposed outside the container; and a line leading the reformate gas obtained by the second reformer from the second reformer to an anode of the solid oxide fuel cell.