VEHICLE OR TRAFFIC CONTROL METHOD AND SYSTEM
    2.
    发明申请
    VEHICLE OR TRAFFIC CONTROL METHOD AND SYSTEM 审中-公开
    车辆或交通控制方法与系统

    公开(公告)号:US20120143488A1

    公开(公告)日:2012-06-07

    申请号:US13390567

    申请日:2010-08-31

    IPC分类号: G08G1/16

    摘要: The invention relates to a vehicle or traffic control method and to a vehicle or traffic control system. The vehicle or traffic control method comprises the steps: a) estimating actual and/or future behavior of a first traffic participant and of a second traffic participant, respectively, the second traffic participant being different from the first traffic participant, b) estimating a trajectory to be taken by the first traffic participant and/or a trajectory to be taken by the second traffic participant, c) determining risk of collision of the first traffic participant relative to the second traffic participant by calculating information adapted for risk assessment of collision of the first traffic participant relative to the second traffic participant, and d) controlling the behavior of the first traffic participant based on the information provided after step a), step b) and/or step c). In this way a probability value is determined which indicates the plausibility that a vehicle or traffic participant might enter into collision within a certain time horizon in the future.

    摘要翻译: 本发明涉及车辆或交通控制方法以及车辆或交通控制系统。 车辆或交通控制方法包括以下步骤:a)分别估计第一交通参与者和第二交通参与者的实际和/或未来行为,第二交通参与者不同于第一交通参与者,b)估计轨迹 由第一交通参与者采取和/或由第二交通参与者采取的轨迹,c)通过计算适于风险评估的风险来确定第一交通参与者相对于第二交通参与者的碰撞风险 第一交通参与者相对于第二交通参与者,以及d)基于在步骤a),步骤b)和/或步骤c)之后提供的信息来控制第一交通参与者的行为。 以这种方式,确定概率值,其表示车辆或交通参与者可能在将来在一定时间范围内进入碰撞的合理性。

    Voting strategy for visual ego-motion from stereo
    3.
    发明授权
    Voting strategy for visual ego-motion from stereo 有权
    立体视觉自我运动的投票策略

    公开(公告)号:US08744169B2

    公开(公告)日:2014-06-03

    申请号:US13118959

    申请日:2011-05-31

    IPC分类号: G06K9/00 H04N13/00

    摘要: Methods and systems for egomotion estimation (e.g. of a vehicle) from visual inputs of a stereo pair of video cameras are described. 3D egomotion estimation is a six degrees of freedom problem in general. In embodiments of the present invention, this is simplified to four dimensions and further decomposed to two two-dimensional sub-solutions. The decomposition allows use of a voting strategy that identifies the most probable solution. An input is a set of image correspondences between two temporally consecutive stereo pairs, i.e. feature points do not need to be tracked over time. The experiments show that even if a trajectory is put together as a simple concatenation of frame-to-frame increments, the results are reliable and precise.

    摘要翻译: 描述了从立体声视频摄像机的视觉输入中进行自动运动估计(例如车辆)的方法和系统。 一般来说,3D自由度估计是一个六自由度问题。 在本发明的实施例中,将其简化为四维并进一步分解为两个二维子解。 分解允许使用表示最可能解决方案的投票策略。 输入是两个时间上连续的立体声对之间的一组图像对应,即不需要随时间跟踪特征点。 实验表明,即使轨迹作为帧到帧增量的简单串联组合在一起,结果是可靠和准确的。

    MONOCULAR 3D POSE ESTIMATION AND TRACKING BY DETECTION
    4.
    发明申请
    MONOCULAR 3D POSE ESTIMATION AND TRACKING BY DETECTION 有权
    通过检测的单眼3D位置估计和跟踪

    公开(公告)号:US20130142390A1

    公开(公告)日:2013-06-06

    申请号:US13702266

    申请日:2011-06-14

    IPC分类号: G06K9/00

    摘要: Methods and apparatus are described for monocular 3D human pose estimation and tracking, which are able to recover poses of people in realistic street conditions captured using a monocular, potentially moving camera. Embodiments of the present invention provide a three-stage process involving estimating (10, 60, 110) a 3D pose of each of the multiple objects using an output of 2D tracking-by detection (50) and 2D viewpoint estimation (46). The present invention provides a sound Bayesian formulation to address the above problems. The present invention can provide articulated 3D tracking in realistic street conditions.The present invention provides methods and apparatus for people detection and 2D pose estimation combined with a dynamic motion prior. The present invention provides not only 2D pose estimation for people in side views, it goes beyond this by estimating poses in 3D from multiple viewpoints. The estimation of poses is done in monocular images, and does not require stereo images. Also the present invention does not require detection of characteristic poses of people.

    摘要翻译: 描述了用于单眼3D人体姿态估计和跟踪的方法和装置,其能够恢复使用单眼,潜在移动的相机拍摄的逼真的街道状况中的人的姿势。 本发明的实施例提供一种三阶段过程,包括使用2D跟踪检测(50)和2D视点估计(46)的输出来估计(10,60,110)每个多个对象的3D姿态。 本发明提供了一种解决上述问题的健全的贝叶斯公式。 本发明可以在现实的街道条件下提供清晰的3D跟踪。 本发明提供了与动态运动结合的人物检测和2D姿态估计的方法和装置。 本发明不仅为侧视图中的人提供2D姿态估计,而且通过从多个视点估计3D的姿态来超越这一点。 姿势的估计是在单目图像中进行的,不需要立体图像。 此外,本发明不需要检测人的特征姿势。

    Monocular 3D pose estimation and tracking by detection
    5.
    发明授权
    Monocular 3D pose estimation and tracking by detection 有权
    单眼3D姿态估计和跟踪通过检测

    公开(公告)号:US08958600B2

    公开(公告)日:2015-02-17

    申请号:US13702266

    申请日:2011-06-14

    IPC分类号: G06K9/00 G06T7/20 G06E1/00

    摘要: Methods and apparatus are described for monocular 3D human pose estimation and tracking, which are able to recover poses of people in realistic street conditions captured using a monocular, potentially moving camera. Embodiments of the present invention provide a three-stage process involving estimating (10, 60, 110) a 3D pose of each of the multiple objects using an output of 2D tracking-by detection (50) and 2D viewpoint estimation (46). The present invention provides a sound Bayesian formulation to address the above problems. The present invention can provide articulated 3D tracking in realistic street conditions.The present invention provides methods and apparatus for people detection and 2D pose estimation combined with a dynamic motion prior. The present invention provides not only 2D pose estimation for people in side views, it goes beyond this by estimating poses in 3D from multiple viewpoints. The estimation of poses is done in monocular images, and does not require stereo images. Also the present invention does not require detection of characteristic poses of people.

    摘要翻译: 描述了用于单眼3D人体姿态估计和跟踪的方法和装置,其能够恢复使用单眼,潜在移动的相机拍摄的逼真的街道状况中的人的姿势。 本发明的实施例提供一种三阶段过程,包括使用2D跟踪检测(50)和2D视点估计(46)的输出来估计(10,60,110)每个多个对象的3D姿态。 本发明提供了一种解决上述问题的健全的贝叶斯公式。 本发明可以在现实的街道条件下提供清晰的3D跟踪。 本发明提供了与动态运动结合的人物检测和2D姿态估计的方法和装置。 本发明不仅为侧视图中的人提供2D姿态估计,而且通过从多个视点估计3D的姿态来超越这一点。 姿势的估计是在单目图像中进行的,不需要立体图像。 此外,本发明不需要检测人的特征姿势。

    DETECTION OF OBJECTS IN AN IMAGE USING SELF SIMILARITIES
    8.
    发明申请
    DETECTION OF OBJECTS IN AN IMAGE USING SELF SIMILARITIES 审中-公开
    使用自我相似性检测图像中的对象

    公开(公告)号:US20130058535A1

    公开(公告)日:2013-03-07

    申请号:US13697212

    申请日:2011-02-28

    IPC分类号: G06K9/00

    摘要: An image processor (10) has a window selector for choosing a detection window within the image, and a self similarity computation part (40) for determining self-similarity information for a group of the pixels in any part of the detection window, to represent an amount of self-similarity of that group to other groups in any other part of the detector window, and for repeating the determination for groups in all parts of the detection window, to generate a global self similarity descriptor for the detection window. A classifier (50) is used for classifying whether an object is present based on the global self-similarity descriptor. By using global self-similarity rather than local similarities more information is captured which can lead to better classification. In particular, it helps enable recognition of more distant self-similarities inherent in the object, and self-similarities present at any scale.

    摘要翻译: 图像处理器(10)具有用于选择图像内的检测窗口的窗口选择器,以及用于确定检测窗口的任何部分中的一组像素的自相似度信息的自相似度计算部分(40),以表示 该组与检测器窗口的任何其他部分中的其他组的自相似量,并且用于重复对检测窗口的所有部分中的组的确定,以生成用于检测窗口的全局自相似性描述符。 分类器(50)用于基于全局自相似性描述符来分类对象是否存在。 通过使用全局自相似性而不是局部相似性,可以获得更多的信息,从而导致更好的分类。 特别地,它有助于识别对象中固有的更远的自相似性,以及任何规模存在的自相似性。

    VOTING STRATEGY FOR VISUAL EGO-MOTION FROM STEREO
    9.
    发明申请
    VOTING STRATEGY FOR VISUAL EGO-MOTION FROM STEREO 有权
    从立体声的视觉运动的投票策略

    公开(公告)号:US20120308114A1

    公开(公告)日:2012-12-06

    申请号:US13118959

    申请日:2011-05-31

    IPC分类号: G06K9/00

    摘要: Methods and systems for egomotion estimation (e.g. of a vehicle) from visual inputs of a stereo pair of video cameras are described. 3D egomotion estimation is a six degrees of freedom problem in general. In embodiments of the present invention, this is simplified to four dimensions and further decomposed to two two-dimensional sub-solutions. The decomposition allows use of a voting strategy that identifies the most probable solution. An input is a set of image correspondences between two temporally consecutive stereo pairs, i.e. feature points do not need to be tracked over time. The experiments show that even if a trajectory is put together as a simple concatenation of frame-to-frame increments, the results are reliable and precise.

    摘要翻译: 描述了从立体声视频摄像机的视觉输入中进行自动运动估计(例如车辆)的方法和系统。 一般来说,3D自由度估计是一个六自由度问题。 在本发明的实施例中,将其简化为四维并进一步分解为两个二维子解。 分解允许使用表示最可能解决方案的投票策略。 输入是两个时间上连续的立体声对之间的一组图像对应,即不需要随时间跟踪特征点。 实验表明,即使轨迹作为帧到帧增量的简单串联组合在一起,结果是可靠和准确的。