摘要:
An optical structure is fabricated by forming an active layer including a photodefinable material on a substrate or on another underlying layer, forming an upper layer above the active layer, and then patterning the active layer by selective application of radiation through the upper layer. The upper layer is substantially transparent to radiation of the type required to activate the photodefinable material in the active layer.
摘要:
A redundant optical connection system is manufactured in specially prepared form to allow optical connections to be made at a later step. In response to information specifying which of the optical sources are functional, further structure may be activated or introduced into the connection system which guides optical energy to optical outputs from only those of the sources that are functional. In one aspect of the invention, the preliminary form includes primary guiding structures coupling each of a plurality of primary optical sources to a respective application structure, and a secondary guiding structure coupled to a secondary optical source and terminating without yet coupling to any application structure. If the information indicates that one of the primary optical sources is non-functional, then structure can be added or activated which transfers optical energy from the secondary guiding structure into the primary guiding structure corresponding to the non-functional source.
摘要:
A device for variable attenuation of an optical channel includes an elongated core surrounded by a cladding. Optical energy propagating along the longitudinal axis of the core is normally confined thereto by the difference in refractive indices between the core and cladding. The thermo-optic coefficients of the core and cladding are closely matched such that waveguide confinement is substantially invariant with respect to ambient temperature. The device further includes a thermal source arranged above the core. The thermal source is operable to generate a temperature gradient of controllable magnitude along a vertical axis extending through the core. The temperature gradient causes reduction of the local refractive index within the core relative to surrounding regions of the cladding such that a portion of the optical energy is deflected away from the thermal source and extracted from the core.
摘要:
A device for variable attenuation of an optical channel includes an elongated core surrounded by a cladding. Optical energy propagating along the longitudinal axis of the core is normally confined thereto by the difference in refractive indices between the core and cladding. The thermo-optic coefficients of the core and cladding are closely matched such that waveguide confinement is substantially invariant with respect to ambient temperature. The device further includes a thermal source arranged above the core. The thermal source is operable to generate a temperature gradient of controllable magnitude along a vertical axis extending through the core. The temperature gradient causes reduction of the local refractive index within the core relative to surrounding regions of the cladding such that a portion of the optical energy is deflected away from the thermal source and extracted from the core.
摘要:
A redundant optical connection system is manufactured in specially prepared form to allow optical connections to be made at a later step. In response to information specifying which of the optical sources are functional, further structure may be activated or introduced into the connection system which guides optical energy to optical outputs from only those of the sources that are functional. In one aspect of the invention, the preliminary form includes primary guiding structures coupling each of a plurality of primary optical sources to a respective application structure, and a secondary guiding structure coupled to a secondary optical source and terminating without yet coupling to any application structure. If the information indicates that one of the primary optical sources is non-functional, then structure can be added or activated which transfers optical energy from the secondary guiding structure into the primary guiding structure corresponding to the non-functional source. In another aspect of the invention, the preliminary form includes a material having N optical sources and more than N output guiding structures. A gap region is provided in the material between the outputs of the optical sources and the inputs of the output guiding structures. Additional guiding structures are later formed or activated in response to the information, to guide optical energy to the inputs of the output guiding structures from only functional ones of the optical sources.
摘要:
In a first state of an optical switch, a structure in the switch confines an optical mode to propagate along a first, unswitched path. The switch is switched into a second state by reducing the refractive index along the first path, or by increasing the refractive index of a region of the switch outside but adjacent to the first path, until the index within the first path is lower, preferably substantially lower, than that of the adjacent region. This creates an anti-waveguiding section in which light is forced to diverge from the unswitched path both by diffraction and refraction. The refractive index change is produced thermo-optically or electro-optically, for example. In a symmetric planar embodiment, upon actuation, light escapes from the confinement region into two beams deflected symmetrically in lateral directions while remaining vertically confined. In an asymmetric planar embodiment, upon actuation, light from the confinement region escapes in one direction away from the confinement region in the horizontal plane, while remaining confined vertically and in the opposite direction in the horizontal plane. A self-aligned method for fabricating optical switches is also described.
摘要:
Optoelectronic and photonic devices are formed by employing polymer materials that have a lower glass transition temperature (Tg) than the nominal operating temperature. By using such materials, the local or segmental mobility is increased so that local stress is eliminated or minimized on the polymer material, making performance more robust. The current invention involves use of a polymer in an optical device in an operating temperature range in the region above Tg, where the polymer segments between crosslinks are allowed local freedom of movement; however, large-scale movement of the material may be restricted by the crosslinked structure of the polymer material. The temperature operation point of a device constructed according to the invention is thus preferably distanced from both the viscoelastic region near Tg and from the glassy region below Tg; such that the device is operated in a region where viscoelastic effects do not significantly affect the materials system, and time-dependent responses of the polymer are minimized or eliminated. Device operation can thus achieve minimum degradation and show improved performance attributes.
摘要:
Optoelectronic and photonic devices are formed by employing polymer materials that have a lower glass transition temperature (Tg) than the nominal operating temperature. By using such materials, the local or segmental mobility is increased so that local stress is eliminated or minimized on the polymer material, making performance more robust. The current invention involves use of a polymer in an optical device in an operating temperature range in the region above Tg, where the polymer segments between crosslinks are allowed local freedom of movement; however, large-scale movement of the material may be restricted by the crosslinked structure of the polymer material. The temperature operation point of a device constructed according to the invention is thus preferably distanced from both the viscoelastic region near Tg and from the glassy region below Tg; such that the device is operated in a region where viscoelastic effects do not significantly affect the materials system, and time-dependent responses of the polymer are minimized or eliminated. Device operation can thus achieve minimum degradation and show improved performance attributes.
摘要:
Optical apparatus with improved center wavelength temperature stability. In an embodiment, an AWG has a plurality of slots inserted along the optical paths. The slots contain one or more compensation materials which collectively correct for an order Q temperature dependency of the AWG base material. Q>=2 or the number of compensation materials is at least 2 or both.
摘要:
Optical apparatus with improved center wavelength temperature stability. In an embodiment, an AWG has a plurality of slots inserted along the optical paths. The slots contain one or more compensation materials which collectively correct for an order Q temperature dependency of the AWG base material. Q>=2 or the number of compensation materials is at least 2 or both.