摘要:
Optoelectronic and photonic devices are formed by employing polymer materials that have a lower glass transition temperature (Tg) than the nominal operating temperature. By using such materials, the local or segmental mobility is increased so that local stress is eliminated or minimized on the polymer material, making performance more robust. The current invention involves use of a polymer in an optical device in an operating temperature range in the region above Tg, where the polymer segments between crosslinks are allowed local freedom of movement; however, large-scale movement of the material may be restricted by the crosslinked structure of the polymer material. The temperature operation point of a device constructed according to the invention is thus preferably distanced from both the viscoelastic region near Tg and from the glassy region below Tg; such that the device is operated in a region where viscoelastic effects do not significantly affect the materials system, and time-dependent responses of the polymer are minimized or eliminated. Device operation can thus achieve minimum degradation and show improved performance attributes.
摘要:
Optoelectronic and photonic devices are formed by employing polymer materials that have a lower glass transition temperature (Tg) than the nominal operating temperature. By using such materials, the local or segmental mobility is increased so that local stress is eliminated or minimized on the polymer material, making performance more robust. The current invention involves use of a polymer in an optical device in an operating temperature range in the region above Tg, where the polymer segments between crosslinks are allowed local freedom of movement; however, large-scale movement of the material may be restricted by the crosslinked structure of the polymer material. The temperature operation point of a device constructed according to the invention is thus preferably distanced from both the viscoelastic region near Tg and from the glassy region below Tg; such that the device is operated in a region where viscoelastic effects do not significantly affect the materials system, and time-dependent responses of the polymer are minimized or eliminated. Device operation can thus achieve minimum degradation and show improved performance attributes.
摘要:
A redundant optical connection system is manufactured in specially prepared form to allow optical connections to be made at a later step. In response to information specifying which of the optical sources are functional, further structure may be activated or introduced into the connection system which guides optical energy to optical outputs from only those of the sources that are functional. In one aspect of the invention, the preliminary form includes primary guiding structures coupling each of a plurality of primary optical sources to a respective application structure, and a secondary guiding structure coupled to a secondary optical source and terminating without yet coupling to any application structure. If the information indicates that one of the primary optical sources is non-functional, then structure can be added or activated which transfers optical energy from the secondary guiding structure into the primary guiding structure corresponding to the non-functional source. In another aspect of the invention, the preliminary form includes a material having N optical sources and more than N output guiding structures. A gap region is provided in the material between the outputs of the optical sources and the inputs of the output guiding structures. Additional guiding structures are later formed or activated in response to the information, to guide optical energy to the inputs of the output guiding structures from only functional ones of the optical sources.
摘要:
A redundant optical connection system is manufactured in specially prepared form to allow optical connections to be made at a later step. In response to information specifying which of the optical sources are functional, further structure may be activated or introduced into the connection system which guides optical energy to optical outputs from only those of the sources that are functional. In one aspect of the invention, the preliminary form includes primary guiding structures coupling each of a plurality of primary optical sources to a respective application structure, and a secondary guiding structure coupled to a secondary optical source and terminating without yet coupling to any application structure. If the information indicates that one of the primary optical sources is non-functional, then structure can be added or activated which transfers optical energy from the secondary guiding structure into the primary guiding structure corresponding to the non-functional source.
摘要:
A well may be formed for access to an optical waveguide core by a process that results in an L-shaped well. The L-shaped well may then be filled with a polymer. By controlling the size of each portion of well, the occurrence of bubbles within the well and cuts to the core may be reduced.
摘要:
Embodiments of a wavelength tunable optical coupler, integrated optical components, and lasers are disclosed. The tunable optical coupler, the integrated optical components, and the lasers include thermo-optic organic material that has an index of refraction which can quickly vary in response to changes in temperature. By controlling the temperature in the thermo-optic organic material through the use of heaters or coolers, the optical coupler, the integrated optical components, and the lasers can be quickly and selectively tuned over a broad range of wavelengths with high spectral selectivity.
摘要:
An optical device includes at least a first and second electrical conductors. At least one optical layer overlies at least a portion of the first and second electrical conductors. An applicator is positioned proximate to said at least one optical layer to selectively redirect light from the optical layer. An electrical coupling path between said at least one applicator and one of said first or second electrical conductors, at least a portion of the coupling path traversing said at least one optical layer. At least one optical waveguide may be formed in an optical layer above said electrical conductors. A feature is located to receive light redirected by the applicator and at least one electrical coupling path, which may be included in said feature, couples the applicator and at least one of said plurality of conductors. In a further aspect, a method for manufacturing an optical device is disclosed. The method comprises the steps of: providing a substrate; constructing at least a first electrical conductor in a first substantially planar layer; forming an optical guiding structure in an optical layer; constructing at least one applicator capable of redirecting optical energy; constructing a feature; and electrically coupling said applicator and said at least first electrical conductor.
摘要:
A flat panel display is based on a new switching technology for routing laser light among a set of optical waveguides and coupling that light toward the viewer. The switching technology is based on poled electro-optical structures. The display technology is versatile enough to cover application areas spanning the range from miniature high resolution computer displays to large screen displays for high definition television formats. The invention combines the high brightness and power efficiency inherent in visible semiconductor diode laser sources with a new waveguide electro-optical switching technology to form a dense two-dimensional addressable array of high brightness light emissive pixels.
摘要:
An optical beam routing apparatus is constructed of solid material in which is embedded a beam routing array structure (1370) which has at least a first waveguide segment (1376) traversing the solid material along a plane, second waveguide segments (1378) traversing the solid material along the same plane and encountering the first waveguide segment at a plurality of intersections, electrically-controlled gratings 1372, 1373) disposed transverse to the intersections to controllably reflect optical energy between the first waveguide segment and the second waveguide segments, and optical reflectors (1374, 1375) at selected locations in line with the second waveguide segments (1378) for projecting optical energy into and/or out of the plane from a selected position (1382) on an-out-of-plane medium which might contain optically readable or writable information, such as a disc. Electrodes at the intersections and the electrically-controllable gratings (1372, 1373) disposed transverse of the intersections and controlled by the electrodes controllably reflect optical energy between the first waveguide segment and the second waveguide segment upon application of a controlled electric field at the electrodes.
摘要:
A new class of optical energy transfer devices and energy guiding devices uses an electric field to control energy propagation using a class of poled structures in solid material. The poled structures, which may form gratings in thin film or bulk configurations, may be combined with waveguide structures. Electric fields applied to the poled structures control routing of optical energy. Devices include splitters, parallel and Y couplers, mode converters and energy leakage attenuators.