摘要:
A field effect transistor has an insulating substrate, a semiconductor thin film formed on the insulating substrate, and a gate insulating film on the semiconductor thin film. A first gate electrode is formed on the gate insulating film. A first region and a second region having a first conductivity type are formed on or in a surface of the semiconductor film on opposite sides of the first gate electrode in a length direction thereof. A third region having a second conductivity type opposite the first conductivity type is arranged on or in the semiconductor film side by side with the second region in a width direction of the first gate electrode. The third region and the second region are in contact with each other and make a low resistance junction. A second gate electrode is formed on the gate insulating film along the second region. A fourth region having the first conductivity type is formed on or in the semiconductor film on an opposite side of the second region with respect to the second gate electrode. One of the first and the fourth regions is used as an output region according to a circuit operation.
摘要:
A field effect transistor has an insulating substrate, a semiconductor thin film formed on the insulating substrate, and a gate insulating film formed on the semiconductor thin film. A first gate electrode is formed on the gate insulating film. A first region and a second region having a first conductivity type are formed on or in a surface of the semiconductor thin film on opposite sides of the first gate electrode in a length direction thereof. A third region having a second conductivity type opposite the first conductivity type is arranged on or in the semiconductor film side by side with the second region in a width direction of the first gate electrode. A conductive thin film is connected with the second region and the third region. A second gate electrode is formed on the gate insulating film along the second region. A fourth region having the first conductivity type is formed on or in the semiconductor film on an opposite side of the second region with respect to the second gate electrode. One of the first and the fourth regions is used as an output region according to a circuit operation and without application of a fixed bias potential to the third region.
摘要:
A semiconductor device comprises a MOS transistor and a resistor. The resistor has a P-type resistor formed from a P-type semiconductor, an N-type resistor formed from an N-type semiconductor and disposed adjacent the P-type resistor, and an insulating film disposed between the P-type and N-type resistors. The P-type resistor is arranged at the low potential side of the semiconductor device and the N-type resistor is arranged at the high potential side thereof. A portion of the insulating film between the P-type and N-type resistors is made electrically conductive by irradiating the portion with a laser beam to destroy the insulating property thereof to thereby achieve conductivity between the P-type and N-type resistors. A gate electrode of the MOS transistor is formed of a P-type polysilicon thin film having the same high concentration impurity as that of the region where the P-type resistor is in contact with a metal wiring, thereby enhancing the current driving capacity of a driver MOS.
摘要:
There is provided a manufacturing method for obtaining an MOS transistor which has a homopolar gate structure and a high-melting metallic silicide structure and is suitable even for high speed operation, while at the same time having a structure in which a sufficient withstand voltage can be attained by forming, by a simple method, low concentration drain regions with a long distance. A source and a drain, which have a low concentration, are formed and a thick insulating film and positive resist is formed (applied) on a gate electrode. Then, the positive resist is exposed at an amount of exposure suitable to expose a portion corresponding to a film thickness of the positive resist formed on a flat portion of the thick insulating film as a base and developed. The thick insulating film is etched by an amount substantially corresponding to a film thickness thereof by anisotropic etching using as a mask those portions of the positive resist partially remaining in a step portion. An impurity having a high concentration is simultaneously introduced into the source, the drain, and the gate electrode using a remaining portion of the thick insulating film as a mask. After that, high-melting metallic silicide is formed on exposed portions of the gate electrode and the source and drain regions of the MOS transistor, respectively.
摘要:
It is an object to provide a highly precise bleeder resistance circuit having an accurate voltage division ratio and a small temperature coefficient of the resistance value and a highly precise semiconductor device having a small temperature coefficient using such a bleeder resistance circuit, e.g., a semiconductor device such as a voltage detector and a voltage regulator. Such characteristic features that the potential of electric conductors on the thin film resistors and electric conductors under the thin film resistors of a bleeder resistance circuit using thin film resistors is made almost equal to the potential of respective thin film resistors and that, when polysilicon is used in the thin film resistor, the dispersion of the resistance value is controlled and the temperature dependency of the resistance value is made lower by thinning the film thickness of the polysilicon thin film resistor are constituted.
摘要:
A field effect transistor has an insulating substrate, a semiconductor thin film formed on the insulating substrate, and a gate insulating film on the semiconductor thin film. A first gate electrode is formed on the gate insulating film. A first region and a second region having a first conductivity type are formed on or in a surface of the semiconductor film on opposite sides of the first gate electrode in a length direction thereof. A third region having a second conductivity type opposite the first conductivity type is arranged on or in the semiconductor film side by side with the second region in a width direction of the first gate electrode. The third region and the second region are in contact with each other and make a low resistance junction. A second gate electrode is formed on the gate insulating film along the second region. A fourth region having the first conductivity type is formed on or in the semiconductor film on an opposite side of the second region with respect to the second gate electrode. One of the first and the fourth regions is used as an output region according to a circuit operation.
摘要:
In a semiconductor device including an n-type metal oxide semiconductor transistor for electrostatic discharge protection surrounded by a shallow trench for device isolation, in order to suppress the off-leak current in an off state, there is formed, in the vicinity of the drain region of the NMOS transistor for ESD protection, an n-type region receiving a signal from an external connection terminal via a p-type region in contact with the drain region of the NMOS transistor for ESD protection.
摘要:
Provided is an electrically erasable and programmable nonvolatile semiconductor memory device having a tunnel region; the tunnel region and the peripheral of the tunnel region are dug down to be made lower, and a depletion electrode, to which an arbitral potential is given to deplete a part of the tunnel region through a depletion electrode insulating film, is arranged in the lowered drain region.
摘要:
In a semiconductor device including an n-type metal oxide semiconductor transistor for electrostatic discharge protection surrounded by a shallow trench for device isolation, in order to suppress the off-leak current in an off state, there is formed, in the vicinity of the drain region of the NMOS transistor for ESD protection, an n-type region receiving a signal from an external connection terminal via a p-type region in contact with the drain region of the NMOS transistor for ESD protection.
摘要:
Polycrystalline silicon thin films are each fixed to the same potential and are each formed under the protective film of each of a plurality of pixel regions for receiving red light, a plurality of pixel regions for receiving green light, and a plurality of pixel regions for receiving blue light, and each polycrystalline silicon thin films has a different thickness for selectively transmitting a received light wavelength of each of the plurality of pixel regions for receiving red light, the plurality of pixel regions for receiving green light, and the plurality of pixel regions for receiving blue light to function as a color filter. The color filter can be formed during an IC manufacturing process while the color filter is positioned to align with the pixel region serving as a light receiving element, with higher precision.