摘要:
A magnetic switching element according to an example of the present invention includes a magnetic element, first and second electrodes which put the magnetic element therebetween, a current control section which is connected to the first and second electrodes, the current control section controlling a magnetization direction of a magnetization free section in such a manner that a current is made to flow between the magnetization free section and the magnetization fixed section, a movable conductive tube having a fixed end and a free end, and a third electrode connected to the fixed end of the conductive tube. A switching operation is performed in such a manner that a spatial position of the conductive tube is caused to change depending on the magnetization direction of the magnetization free section.
摘要:
A magnetic switching element according to an example of the present invention includes a magnetic element, first and second electrodes which put the magnetic element therebetween, a current control section which is connected to the first and second electrodes, the current control section controlling a magnetization direction of a magnetization free section in such a manner that a current is made to flow between the magnetization free section and the magnetization fixed section, a movable conductive tube having a fixed end and a free end, and a third electrode connected to the fixed end of the conductive tube. A switching operation is performed in such a manner that a spatial position of the conductive tube is caused to change depending on the magnetization direction of the magnetization free section.
摘要:
A magnetic switching element according to an example of the present invention includes a magnetic element, first and second electrodes which put the magnetic element therebetween, a current control section which is connected to the first and second electrodes, the current control section controlling a magnetization direction of a magnetization free section in such a manner that a current is made to flow between the magnetization free section and the magnetization fixed section, a movable conductive tube having a fixed end and a free end, and a third electrode connected to the fixed end of the conductive tube. A switching operation is performed in such a manner that a spatial position of the conductive tube is caused to change depending on the magnetization direction of the magnetization free section.
摘要:
A magnetic recording element includes a first fixed layer having a first and second face and having a magnetization direction fixed in a direction penetrating the first and second face. A free layer has a third and fourth face, a magnetization easy and hard axis both extending along the third or fourth face, and a magnetization direction which changes according to a direction of a current flowing through the first and fourth face with a magnetic field applied in a fixed direction or according to a direction of a magnetic field applied to the free layer with a current flowing through the first and fourth face in a fixed direction. A nonmagnetic first intermediate layer is provided between the second and third face. A magnetic field generating layer applies a magnetic field smaller than the anisotropy field of the free layer to the free layer along the magnetization hard axis.
摘要:
A magnetic recording element includes a first fixed layer having a first and second face and having a magnetization direction fixed in a direction penetrating the first and second face. A free layer has a third and fourth face, a magnetization easy and hard axis both extending along the third or fourth face, and a magnetization direction which changes according to a direction of a current flowing through the first and fourth face with a magnetic field applied in a fixed direction or according to a direction of a magnetic field applied to the free layer with a current flowing through the first and fourth face in a fixed direction. A nonmagnetic first intermediate layer is provided between the second and third face. A magnetic field generating layer applies a magnetic field smaller than the anisotropy field of the free layer to the free layer along the magnetization hard axis.
摘要:
A magneto-resistance effect element can obtain a high output and makes it possible to stabilize magnetization in a magnetization free layer therein even if a sense current is caused to flow. The magneto-resistance effect element is provided with a magnetization free layer whose magnetization direction is variable, a magnetization pinned layer whose magnetization direction is pinned, and an intermediate layer provided between the magnetization free layer and the magnetization pinned layer, where when no external magnetic field is present and no current flows, the magnetization direction in the magnetization free layer is anti-parallel to the magnetization direction pinned in the magnetization pinned layer, an easy axis of magnetization in the magnetization free layer is parallel to the magnetization direction pinned in the magnetization pinned layer, and a sense current flows from the magnetization free layer to the magnetization pinned layer.
摘要:
A magnetic element includes a channel layer, a first magnetic electrode which is in contact with the channel layer, a second magnetic electrode which is in contact with the channel layer and is insulated from the first magnetic electrode, a first intermediate layer which is provided adjacent to the first magnetic electrode and has a first insulating layer, a first magnetic layer which is provided in contact with a surface of the first intermediate layer on an opposite side to a surface contacting the first magnetic electrode to transfer magnetization to the first magnetic electrode, a first electrode which is connected to the first magnetic electrode, and a second electrode which is connected to the second magnetic electrode, at least one of the first electrode and the second electrode outputting a first signal which changes depending on a magnetic arrangement of the first magnetic electrode and the second magnetic electrode.
摘要:
A magnetic recording element includes a fixed layer having first and second surfacesm, a recording layer having third and fourth surfaces and being essentially made of a ferromagnetic material having first and second atomic potentials for the majority-spin band electrons and the minority-spin band electrons, a spacer layer being arranged between the fixed and recording layers and being in contact with the second and third surfaces, a cap layer having fifth and sixth surfaces, being essentially made of a nonmagnetic material having a third atomic potential less than an intermediate value between the first and second atomic potentials, and having a thickness of not more than 3 nm, the fifth surface being in contact with the fourth surface, and a reflecting layer being in contact with the sixth surface and being essentially made of a nonmagnetic material having a forth atomic potential different from the third atomic potential.
摘要:
A magnetic recording element, in which a spin-polarized electron is injected, has a layer whose magnetization direction is changed by the spin-polarized electron in accordance with a flow direction of the spin-polarized electron and records data in accordance with the magnetization direction. The magnetic recording element includes a free layer whose magnetization direction is changed by an action of a spin-polarized electron and has a spin polarization Pf. A pinned layer whose magnetization direction is fixed has a spin polarization Pp larger than the spin polarization Pf. An intermediate layer is interposed between the pinned layer and the free layer and consisting essentially of a nonmagnetic material.
摘要:
A magnetic element includes a channel layer, a first magnetic electrode which is in contact with the channel layer, a second magnetic electrode which is in contact with the channel layer and is insulated from the first magnetic electrode, a first intermediate layer which is provided adjacent to the first magnetic electrode and has a first insulating layer, a first magnetic layer which is provided in contact with a surface of the first intermediate layer on an opposite side to a surface contacting the first magnetic electrode to transfer magnetization to the first magnetic electrode, a first electrode which is connected to the first magnetic electrode, and a second electrode which is connected to the second magnetic electrode, at least one of the first electrode and the second electrode outputting a first signal which changes depending on a magnetic arrangement of the first magnetic electrode and the second magnetic electrode.