摘要:
To provide a pulverized coal burner capable of reducing the NOx concentration at the time of a low load, a pulverized coal burner includes a secondary air nozzle and a tertiary air nozzle concentrically positioned about the outer periphery of a fuel nozzle carrying a pulverized coal with a primary air, and two swirling flow generators are included at least one of these nozzles with a positional relation parallel to a flow of air. One of the swirling flow of the two swirling flow generators can be set strongly. And, under a condition of low air flow rate, air can be supplied from one swirling flow generator alone. Since the swirling strength of the combustion air can be increased, the concentration of NOx produced by the combustion of the pulverized coal can be reduced. Also, because the swirling strength at the time of low load can be increased, the NOx concentration can be reduced by keeping the pulverized coal flame stable.
摘要:
A pulverized coal combustion burner includes a pulverized coal nozzle, and secondary and tertiary air nozzles provided in concentric relation to the pulverized coal nozzle. A flame stabilizing ring is provided at an outlet end of the pulverized coal nozzle. A separation wall is provided within the pulverized coal nozzle to divide a passage in this nozzle into two passages. A pulverized coal/air mixture flows straight through the two passages, so that recirculation flows of the pulverized coal/air mixture are formed in proximity to the outlet end of the pulverized coal nozzle. As a result, the ignitability of the pulverized coal, as well as a combustion rate, is enhanced, thereby reducing the amount of discharge of NOx.
摘要:
According to a burner of the present invention, a stable combustion is obtained in a wide range from a high-load operation condition to a low-load operation condition even in the case of low quality solid fuel such as brown coal. The amount of air supplied from additional air holes or additional air nozzles 12 can be adjusted depending on the combustion load of furnace 41. At a low load, the amount of air supplied from additional air holes or additional air nozzles 12 is increased, whereby the oxygen concentration in a recirculation zones 19 formed downstream of the outside of a fuel nozzle 11 exit, permits a stable combustion. At a high load, the amount of air supplied from additional air holes or additional air nozzles 12 is reduced, whereby a flame is formed in a position far from the fuel nozzle 11. This suppresses thermal radiation onto a solid fuel burner 42 structure and a furnace 41 wall. The solid fuel burner 42 is applicable to combustion using low-quality solid fuel such as brown coal and exhaust gas as the carrier gas.
摘要:
A pulverized coal burner includes a pulverized coal nozzle for jetting a mixture of pulverized coal and primary air, a secondary air nozzle and a tertiary air nozzle, concentrically arranged around the outer periphery of the pulverized coal nozzle, and a tube expanded portion at the end of a partition wall separating two adjacent air nozzles. A flow shift means such as a guide plate for shifting the secondary air in the secondary air nozzle so as to flow along the tube expanded portion is provided. The secondary air is jetted outwardly by the guide plate, and mixing of the secondary air and the tertiary air with pulverized coals is delayed, whereby an amount of NOx is decreased.
摘要:
A combustion burner includes a mixture nozzle (2) defining a mixture fluid passage through which a mixture fluid (1) containing pulverized coal and conveyor gas flows toward a furnace, secondary and tertiary air passages surrounding the mixture nozzle (2), through which secondary air (6) and tertiary air (9) for combustion purposes flow, respectively; and air injection nozzles (24) provided in the vicinity of an outer periphery of a distal end of the mixture nozzle (2). The air (21) is injected from the air injection nozzles (24) toward the axis of the mixture nozzle, so that the high-temperature gas in the vicinity of the outer periphery of the distal end of the mixture nozzle (2) is drawn into the mixture fluid (1) in the vicinity of the outer periphery of this distal end.
摘要:
A burner for burning fine coal powder comprising: a fine coal powder nozzle 10 for injecting a mixture of the fine coal powder and air; and air nozzles 11, 12 for injecting air: wherein the sufficient amount of air for complete combustion of the fine coal powder is supplied from the air nozzles; a reducing flame at a high temperature is formed by consuming oxygen rapidly with forming a flame at a high temperature by igniting the fine coal powder rapidly in the vicinity of the outlet of the burner; and an oxidizing flame having an uniform distribution of gas composition in radial direction to the central axis of the burner is formed by mixing the air injected from the air nozzle in the downstream of the reducing flame at the high temperature.
摘要:
A combustion method utilizing a pulverized coal combustion burner which is provided with a pulverized coal nozzle for jetting a fluid mixture of pulverized coal and air and an air nozzle for jetting air. In the method, a combustion flame formed by the pulverized coal combustion burner forms a first zone of a gas phase air ratio of one or less at a radially central portion of the flame and a second zone of a gas phase air ratio of more than one outside of the first zone adjacent the coal nozzle, and a third zone of a gas phase air ratio of one or less at a downstream side from said first and second zones.
摘要:
The invention provides a combustion apparatus which can inhibit an NOx generation even in the case of promoting a mixing between a high-temperature combustion gas and an air so as to intend to reduce an unburned combustible. In a combustion apparatus provided with a burner burning a fuel within a furnace in a theoretical air ratio or less, and an air port supplying a combustion air for a shortfall in the burner, a supply apparatus for supplying a nitrogen oxide generation inhibiting gas is provided in a mixing region between the both or near the mixing region. Further, the invention provides a wind box which can inhibit an NOx generation even in the case of promoting a mixing between a high-temperature combustion gas and an air so as to intend to reduce an unburned combustible. In a wind box having an air port arranged in a back flow side of the burner and supplying a combustion air for a shortfall in the burner, a supply apparatus for supplying a nitrogen oxide generation inhibiting gas is provided in a mixing region between the both or near the mixing region.
摘要:
The invention provides a combustion apparatus which can inhibit an NOx generation even in the case of promoting a mixing between a high-temperature combustion gas and an air so as to intend to reduce an unburned combustible. In a combustion apparatus provided with a burner burning a fuel within a furnace in a theoretical air ratio or less, and an air port supplying a combustion air for a shortfall in the burner, a supply apparatus for supplying a nitrogen oxide generation inhibiting gas is provided in a mixing region between the both or near the mixing region. Further, the invention provides a wind box which can inhibit an NOx generation even in the case of promoting a mixing between a high-temperature combustion gas and an air so as to intend to reduce an unburned combustible. In a wind box having an air port arranged in a back flow side of the burner and supplying a combustion air for a shortfall in the burner, a supply apparatus for supplying a nitrogen oxide generation inhibiting gas is provided in a mixing region between the both or near the mixing region.
摘要:
A burner for pulverized coal has a coal duct for pulverized coal and primary combustion air and a secondary combustion air duct such that the coal and primary air and secondary air mix outside the outlet nozzles of the duct in a mixing zone at which combustion occurs. Coal distribution means in the coal duct create, adjacent the outlet nozzle, at least one outer zone of flow spaced from the coal duct axis and at least one inner zone of flow nearer the coal duct axis. These are means for slowing flow in the outer zone relative to the flow in the inner zone, prior to the mixing zone. To achieve good mixing, and promote NO.sub.x reduction, the coal concentration in the outer zone is higher than in the inner zone. The slowing means may be radially inwardly projecting baffles.