摘要:
The method of measuring the aberration of the projection optics, according to the present invention includes the following steps. In the first step, the first mask pattern including the first pattern in which a line and space pattern is arranged on a photomask to be linearly symmetrical, and the second pattern in which line patterns having a large line width are arranged on outer sides of the first pattern, to be linearly symmetrical, is transferred on a substrate. In the second step, the second mask pattern in which a patter designed to leave a part of the first pattern and a pattern designed to leave the entire second pattern are arranged to be linearly symmetrical, is transferred on the same substrate, so as to superimpose it on the transferred first pattern. In the third step, the position of the transferred pattern of the second pattern, and the predetermined position of the pattern section of the transferred pattern of the first pattern, which is left in the second step are detected. Thus, from the difference between these positions detected in the third step, the aberration of the projecting optics which is situated between the mask pattern of the photomask and the substrate is measured.
摘要:
The invention allows for measurement at the same density as an actual device pattern and measures the level of registration of actual patterns with precision. In the measurement of the invention, a first exposure process is performed on a first-level pattern and a second exposure process is then performed on a second-level pattern. After that, the patterns are developed and etched, thereby forming two patterns of different shapes. Next, the resistance between terminals of a pattern which are obtained by means of etching is measured through a four-point measurement. An amount of misregistration of the first-level pattern and the second-level pattern is calculated from the measured resistance.
摘要:
Aggregation of the particulate matter is facilitated. A particulate matter processing apparatus (1) comprises an electrode (5) which is provided in an exhaust gas passage (3) of an internal combustion engine, which extends from a wall surface of the exhaust gas passage (3) toward an inner side of the exhaust gas passage (3), which is bent at a bent portion (51) toward an upstream side or a downstream side in a flow direction (B) of an exhaust gas, and which extends toward the upstream side or the downstream side in the flow direction (B) of the exhaust gas, wherein the electrode (5) is formed so that a field intensity, which is provided between the electrode (5) and the wall surface of the exhaust gas passage (3) on the upstream side, is larger than that provided on the downstream side.
摘要:
A lens-frame moving mechanism includes a lens frame guided to move between a ready-to-photograph position and a retracted position, the lens frame being biased forwardly by a biaser; an intermediate linearly movable member, wherein the lens frame contacts the intermediate linearly movable member; a leading screw formed on the drive shaft of a motor; a nut member screw-engaged onto the leading screw, wherein the nut member does not rotate relative to the lens frame and moves the intermediate linearly movable member in the optical axis direction; and a rearwardly-movable member which rearwardly moves the lens frame against the biasing force such that the lens frame moves away from the intermediate linearly movable member in the optical axis direction while the lens frame is moved from the ready-to-photograph position to the retracted position.
摘要:
Methods and apparatus for generating borehole seismic surveys are disclosed. The methods and apparatus enable more accurate surveys than previous surveying systems. In some embodiments, firing of remote seismic sources is synchronized with data recording in a borehole. In some embodiments, the synchronization is based on a universal time standard. In some embodiments, GPS positioning technology is used to predict firing times and synchronize firing times with downhole and surface recording.
摘要:
The embodiments relate to a method of calculating an image for simulating by calculation an image imaged by a projection optical system. In this method, a Stokes vector showing a characteristic of an illumination light is acquired first. Next, this Stokes vector is divided into a polarized light component vector and a non-polarized light component vector. The polarized light component vector is divided into a first coherent component vector and a first non-coherent component vector. The non-polarized light component vector is divided into a second coherent component vector and a second non-coherent component vector. Then, imaging calculation is performed at least for the first coherent component vector and the second coherent component vector, respectively.
摘要:
A zoom lens includes a variable aperture-stop mechanism positioned in front or behind an aperture-control lens group; a first rotation imparting member, which rotates an opening/closing ring of the variable aperture-stop mechanism by a relative movement between the variable aperture-stop mechanism and the first rotation imparting member in the optical axis direction so as to hold an adjustable aperture of the variable aperture-stop mechanism at a small aperture size when the aperture-control lens group moves within in the zooming range; and a second rotation imparting member, which rotates the opening/closing ring by a relative movement between the variable aperture-stop mechanism and the second rotation imparting member to open and hold the adjustable aperture at a large aperture size when the aperture-control lens group moves to the accommodated position, at which the aperture-control lens group is partly positioned in the adjustable aperture held at the large aperture size.
摘要:
An optical element position control mechanism includes an optical element holding member which holds an optical element of a photographing system; an advancing/retracting movement guide member which guides the optical element holding member in an optical axis direction of the photographing system to be movable in the optical axis direction; and a biasing device including an arm, the arm being swingable about a swing axis which is substantially orthogonal to the optical axis and being engaged with the optical element holding member. The biasing device simultaneously exerts via the arm both a biasing force in a direction of movement of the optical element holding member that is guided by the advancing/retracting movement guide member and a biasing force in a direction orthogonal to the direction of movement of the optical element holding member on the optical element holding member.
摘要:
An optical element position control mechanism includes an optical element holding member which holds an optical element of a photographing system and is guided in an optical axis direction; a drive mechanism for moving the optical element holding member in the optical axis direction; and a biasing device including an arm which is swingable about a swing axis, the swing axis being substantially orthogonal to the optical axis, and the arm extending substantially orthogonal to the swing axis and having a free end portion which engages with the optical element holding member to bias the optical element holding member in the optical axis direction.
摘要:
A support structure for a light quantity control unit of a lens barrel includes a holding frame which holds a light quantity control member; front and rear support members positioned in front and behind the holding frame, respectively; a front guide pin and a front pin support hole formed on one and the other of the holding frame and the front support member, the front guide pin being slidably inserted into the front pin support hole; and a rear guide pin and a rear pin support hole formed on one and the other of the holding frame and the rear support member, the rear guide pin being slidably inserted into the rear pin support hole. The holding frame is supported by the front and rear guide pins and the front and rear pin support holes to be movable between the front and rear support members.