摘要:
A refrigeration-cycle component assembly includes a pipe connecting member, a box temperature-sensitive expansion valve, an ejector, a passenger-compartment high-pressure pipe, and a passenger-compartment low-pressure pipe. The component assembly is provided in a flat space, which is defined at a side of an air-conditioning unit in a vehicle transverse direction, and which is flat in the vehicle transverse direction. The pipe connecting member and the refrigerant suction portion are intensively arranged at a vehicle front side in the flat space. The component assembly is entirely covered by a heat insulating member.
摘要:
A first evaporator connected to an outlet side of an ejector, a second evaporator connected to a refrigerant suction port of the ejector, a throttle mechanism arranged on an inlet side of a refrigerant flow of the second evaporator and for reducing the pressure of the refrigerant flow are provided. Furthermore, the ejector, the first evaporator, the second evaporator and the throttle mechanism are assembled integrally with each other to construct an integrated unit having one refrigerant inlet and one refrigerant outlet. Hence, mounting performance of an ejector type refrigeration cycle can be improved.
摘要:
A heat exchanger includes a plurality of fluid passages through which a heat-exchanger fluid including a liquid-phase fluid passes, a tank disposed above inlet parts of the fluid passages for distributing a flow of the heat-exchanger fluid to the fluid passages, and a retention member that is located above the inlet parts within the tank, for temporarily storing therein the liquid-phase fluid flowing into the tank. The retention member is constructed such that the liquid-phase fluid overflowing from the retention member falls toward the inlet part. Accordingly, the heat-exchanger fluid can be uniformly distributed into the fluid passages from the tank. For example, the heat exchanger can be used as an evaporator for a refrigerant cycle device having an ejector.
摘要:
A two-stage decompression ejector includes a variable throttle mechanism having a first throttle passage for decompressing a fluid and a valve body for changing a throttle passage area of the first throttle passage, a nozzle having therein a second throttle passage for further decompressing the fluid decompressed by the variable throttle mechanism, and a suction portion for drawing a fluid by a suction effect of a high-velocity jet fluid from the nozzle. The formula of 0.07≦Vo×S/vn≦0.7 is satisfied, in which Vo is an intermediate-pressure space volume (mm3) from an outlet of the variable throttle mechanism to an inlet of the second throttle passage, S is a throttle passage sectional area (mm2) of a minimum passage sectional area portion of the second throttle passage, and vn is a flow velocity (mm/s) of the fluid passing through the minimum passage sectional area portion.
摘要:
An integrated unit for a refrigerant cycle device includes an ejector having a nozzle part for decompressing refrigerant, and an evaporator located to evaporate the refrigerant to be drawn into a refrigerant suction port of the ejector or the refrigerant discharged from an outlet of the ejector. The evaporator includes a plurality of tubes defining refrigerant passages through which refrigerant flows, a tank that is disposed at one end side of the tubes for distributing refrigerant into the tubes and for collecting the refrigerant from the tubes. The tank extends in a tank longitudinal direction that is parallel to an arrangement direction of the tubes, and is provided with an end portion in the tank longitudinal direction. Furthermore, the end portion has a hole portion for inserting the ejector, and the ejector is inserted into an inner space of the tank from the hole portion.
摘要:
In a refrigerant cycle device, a radiator has a heat radiating portion for radiating high-pressure refrigerant discharged from a compressor and a refrigerant outlet downstream from the heat radiating portion, an ejector includes a nozzle portion for decompressing and expanding refrigerant and a refrigerant suction port for sucking refrigerant by high-velocity refrigerant flow jetted from the nozzle portion. The refrigerant cycle device includes a throttle unit for decompressing refrigerant flowing out of the refrigerant outlet of the radiator, an evaporator located between a refrigerant downstream side of the throttle unit and the refrigerant suction port of the ejector, and a branch portion located within the heat radiating portion of the radiator to branch a refrigerant flow. In the refrigerant cycle device, the nozzle portion has a nozzle inlet coupled to the branch portion so that refrigerant flows into the nozzle inlet from the branch portion of the radiator.
摘要:
An ejector-type air-conditioning and refrigerating system according to the present invention is mounted on an automotive vehicle. The system includes a first evaporator for cooling a passenger compartment and a second evaporator for cooling a refrigerator mounted on the vehicle. Refrigerant is supplied to the first evaporator through an ejector, while the refrigerant is supplied to the second evaporator through a restrictor disposed in a branch passage. Refrigerant evaporated in the second evaporator is sucked by a sucking portion provided in the ejector through a sucking passage. A noise dissipater for suppressing noises caused by pulsating vibrations generated in the ejector is disposed in the sucking passage at a position close to the sucking portion of the ejector. The noise dissipater is postured in the sucking passage so that liquid components in the refrigerant including oil contained in the refrigerant are prevented from being retained in the dissipater.
摘要:
In a refrigerant cycle device, a radiator has a heat radiating portion for radiating high-pressure refrigerant discharged from a compressor and a refrigerant outlet downstream from the heat radiating portion, an ejector includes a nozzle portion for decompressing and expanding refrigerant and a refrigerant suction port for sucking refrigerant by high-velocity refrigerant flow jetted from the nozzle portion. The refrigerant cycle device includes a throttle unit for decompressing refrigerant flowing out of the refrigerant outlet of the radiator, an evaporator located between a refrigerant downstream side of the throttle unit and the refrigerant suction port of the ejector, and a branch portion located within the heat radiating portion of the radiator to branch a refrigerant flow. In the refrigerant cycle device, the nozzle portion has a nozzle inlet coupled to the branch portion so that refrigerant flows into the nozzle inlet from the branch portion of the radiator.
摘要:
A first evaporator connected to an outlet side of an ejector, a second evaporator connected to a refrigerant suction port of the ejector, a throttle mechanism arranged on an inlet side of a refrigerant flow of the second evaporator and for reducing the pressure of the refrigerant flow are provided. Furthermore, the ejector, the first evaporator, the second evaporator and the throttle mechanism are assembled integrally with each other to construct an integrated unit having one refrigerant inlet and one refrigerant outlet. Hence, mounting performance of an ejector type refrigeration cycle can be improved.
摘要:
A refrigeration-cycle component assembly includes a pipe connecting member, a box temperature-sensitive expansion valve, an ejector, a passenger-compartment high-pressure pipe, and a passenger-compartment low-pressure pipe. The component assembly is provided in a flat space, which is defined at a side of an air-conditioning unit in a vehicle transverse direction, and which is flat in the vehicle transverse direction. The pipe connecting member and the refrigerant suction portion are intensively arranged at a vehicle front side in the flat space. The component assembly is entirely covered by a heat insulating member.