摘要:
An evaporative fuel-processing system for an internal combustion engine, comprises an evaporative emission control system in which a first control valve is arranged across an evaporative fuel-guiding passage extending between a fuel tank and a canister, a second control valve across a purging passage extending between the canister and the intake system of the engine, and a third control valve at an air inlet port of the canister, respectively. An external diagnostic device is humanly operatable for diagnosing operating conditions of the engine and the vehicle. An ECU is responsive to an output from an external diagnostic device which diagnoses operating conditions of the engine, for determining whether there is an abnormality in the evaporative emission control system, based upon an output from the tank internal pressure sensor, which is obtained when the evaporative emission control system has been brought into the predetermined negatively pressurized state, when the engine is in a predetermined operating condition.
摘要:
An evaporative fuel-processing system for an internal combustion engine, incorporates an evaporative emission control system in which a first control valve is arranged across an evaporative fuel-guiding passage extending between a fuel tank and a canister, a second control valve across a purging passage extending between the canister and the intake system of the engine, and a third control valve at an air inlet port of the canister, respectively. An ECU generates operation command signals to the first to third control valves for closing or opening the same to bring the evaporative emission control system into a predetermined negatively pressurized state. The ECU is responsive to an output from a parameter sensor which detects at least one of vehicle speed, temperature within the fuel tank, and an amount of fuel within the fuel tank, for determining whether there is an abnormality in the evaporative emission control system, based upon an output from a tank internal pressure sensor. The output is obtained when the evaporative emission control system has been brought into the predetermined negatively pressurized state, when the value of at least one parameter detected by the parameter sensor falls within a predetermined range.
摘要:
A tank internal pressure-detecting device for an internal combustion engine having an evaporative emission control system for controlling purging of evaporative fuel generated in a fuel tank thereof into an intake system thereof. An ECU interrupts purging of evaporative fuel by the evaporative emission control system for a predetermined period of time after the engine is started. The ECU causes control valves of the evaporative emission control system to open the interior of the fuel tank to the atmosphere, and stores a value of pressure within the fuel tank detected by a tank internal pressure sensor as a reference value while the purging is being interrupted and at the same time the interior of the fuel tank is opened to the atmosphere. The ECU corrects an output value of the tank internal pressure sensor, based upon the reference value stored.
摘要:
An evaporative fuel-processing system includes a first control valve arranged in a charging passage connecting between a fuel tank and a canister for adsorbing evaporative fuel generated from the fuel tank, a second control valve arranged in a purging passage connecting between the canister and an intake passage of the engine, a third control valve arranged in an air inlet port of the canister, and a system internal pressure sensor for detecting pressure within the system. The system is checked for a leak by monitoring a value of the pressure detected by the sensor after the system is negatively pressurized by closing the third control valve and opening the second control valve. The sensor is provided at a location upstream of the first control valve, and the first control valve is closed to detect a value of the pressure or a change thereof. Abnormality determination is carried out based on the detected value of the pressure. Alternatively, all of the above valves are closed in the negatively-pressurized state of the system to detect a first amount of change in the pressure, and then the first control valve alone is opened to detect a second amount of change in the pressure. Abnormality determination can be carried out based on the first and second amounts of change in the pressure, or by comparing a value of the pressure detected when the first and second valves are closed after negative pressurization with a value of the pressure detected after the first control valve is opened.
摘要:
An evaporative fuel processing system adapted to be capable of detecting abnormality of an evaporative emission control system for storing, in a canister, evaporative fuel generated from a fuel tank for holding fuel to be supplied to an internal combustion engine, and purging evaporative fuel into the intake system of the engine. A first control valve is arranged across a passage extending between the fuel tank and the canister. A second control valve is arranged across a passage extending between the canister and the intake system of the engine. A third control valve is provided for an air inlet port of the canister communicatable with the atmosphere. Through operating these control valves to open and close them, the evaporative emission control system is negatively pressurized, and abnormality of this system is detected based on the pressure detected in this negatively pressurized state thereof. Timing for carrying out abnormality determination is determined depending on conditions of the fuel tank. Before starting the whole process for abnormality diagnosis of the system, evaporative fuel stored in the canister is allowed to be purged for a predetermined time period. When the temperature of fuel in the fuel tank exceeds a predetermined value, the abnormality determination is inhibited.
摘要:
An evaporative fuel processing system adapted to be capable of detecting abnormality of an evaporative emission control system for storing, in a canister, evaporative fuel from a fuel tank for holding fuel to be supplied to an internal combustion engine, and purging evaporative fuel into the intake system of the engine. A first control valve is arranged across a passage extending between the fuel tank and the canister. A second control valve is arranged across a passage extending between the canister and the intake system of the engine. A third control valve is provided for an air inlet part of the canister communicatable with the atmosphere. Through operating these control valves to open and close them, the evaporative emission control system is negatively pressurized, and abnormality of this system is detected based on the pressure detected in this negatively pressurized state thereof. Timing for carrying out abnormality determination is determined depending on conditions of the fuel tank. Before starting the whole process for abnormality diagnosis of the system evaporative fuel stored in the canister is allowed to be purged for a predetermined time period. When the temperature of fuel in the fuel tank exceeds a predetermined value, the abnormality determination is inhibited.
摘要:
A tank internal pressure-detecting device for an internal combustion engine having an evaporative emission control system for controlling purging of evaporative fuel generated in a fuel tank thereof into an intake system thereof. An ECU interrupts purging of evaporative fuel by the evaporative emission control system for a predetermined period of time after the engine is started. The ECU causes control valves of the evaporative emission control system to open the interior of the fuel tank to the atmosphere, and stores a value of pressure within the fuel tank detected by a tank internal pressure sensor as a reference value while the purging is being interrupted and at the same time the interior of the fuel tank is opened to the atmosphere. The ECU corrects an output value of the tank internal pressure sensor, based upon the reference value stored.
摘要:
A catalyst deterioration-determining system determines deterioration of a catalyst arranged in the exhaust passage of an internal combustion engine. An ECU is responsive to an output from an O.sub.2 sensor arranged upstream of the catalyst or outputs from O.sub.2 sensors arranged upstream and downstream of the catalyst for controlling the air-fuel ratio of a mixture supplied to the engine by means of an air-fuel ratio correction value (first air-fuel ratio control). When the engine is in a predetermined operating condition, the system effects changeover from the first air-fuel ratio control to a second air-fuel ratio control which is responsive to the output from the downstream O.sub.2 sensor for controlling the air-fuel ratio of the mixture by means of the air-fuel ratio correction value. After the changeover has been effected, a time period is measured which elapses from the time the second air-fuel ratio control causes a change in the air-fuel ratio correction value from a richer side to a leaner side or vice versa with respect to a stoichiometric air-fuel ratio to the time the output from the downstream O.sub.2 sensor is inverted from the richer side to the leaner side or vice versa with respect to the stoichiometric air-fuel ratio. It is determined that the catalyst is deteriorated, when the measured time period is shorter than the predetermined time period.
摘要:
A misfire-detecting system detects a misfire occurring in an internal combustion engine. A value of sparking voltage for discharging a spark plug of the engine is detected. A differentiating circuit differentiates the detected value of the sparking voltage. A misfire-determining circuit compares the differential value of the sparking voltage with a predetermined value, and determines, based upon a result of the comparison, whether a misfire has occurred in the engine.
摘要:
A misfire-detecting system for an internal combustion engine detects a value of sparking voltage generated after generation of an ignition command signal, compares the detected value of sparking voltage with a predetermined voltage value, and determines whether or not a misfire has occurred in the engine, based upon results of the comparison. The determination as to occurrence of the misfire is effected, based upon results of the comparison between the detected value of the sparking voltage and the predetermined voltage value, obtained within a previously set limited comparison period.