摘要:
A sensor is used at a substrate level in a lithographic projection apparatus having a projection system with a numeric aperture that is greater than 1 and is configured to project a patterned radiation beam onto a target portion of a substrate The sensor includes a radiation-detector; a transmissive plate having a front surface and a back surface, the transmissive plate being positioned such that radiation projected by the projection system passes into the front surface of the transmissive plate and out of the back surface thereof to the radiation detector; and a luminescent layer provided on the back surface of the transmissive plate, the luminescent layer absorbing the radiation and emitting luminescent radiation of a different wavelength, wherein the back surface is rough.
摘要:
A part of exposure beam through a liquid via a projection optical system enters a light-transmitting section, enters an optical member without passing through gas, and is focused. The exposure apparatus receives the exposure light from the projection optical system to perform various measurements even if the numerical aperture of the projection optical system increases.
摘要:
A part of exposure beam through a liquid via a projection optical system enters a light-transmitting section, enters an optical member without passing through gas, and is focused. The exposure apparatus receives the exposure light from the projection optical system to perform various measurements even if the numerical aperture of the projection optical system increases.
摘要:
A part of exposure beam through a liquid via a projection optical system enters a light-transmitting section, enters an optical member without passing through gas, and is focused. The exposure apparatus receives the exposure light from the projection optical system to perform various measurements even if the numerical aperture of the projection optical system increases.
摘要:
A part of exposure beam through a liquid(LQ) via a projection optical system(PL) enters a light-transmitting section(44), enters an optical member(41) without passing through gas, and is focused. The exposure apparatus receives the exposure light from the projection optical system to perform various measurements even if the numerical aperture of the projection optical system increases.
摘要:
There is disclosed an evaluation method for evaluating a one-dimensional illumination distribution using polynomials, the method comprising steps of: setting up, as the polynomials, one-dimensional power polynomials which are orthogonal in a closed interval; and approximating the one-dimensional illumination distribution with the power polynomials to obtain the coefficients of respective terms of the power polynomials.
摘要:
There is disclosed an evaluation method for evaluating a one-dimensional illumination distribution using polynomials, the method comprising steps of: setting up, as the polynomials, one-dimensional power polynomials which are orthogonal in a closed interval; and approximating the one-dimensional illumination distribution with the power polynomials to obtain the coefficients of respective terms of the power polynomials.
摘要:
There is disclosed an evaluation method for evaluating a one-dimensional illumination distribution using polynomials, the method comprising steps of: setting up, as the polynomials, one-dimensional power polynomials which are orthogonal in a closed interval; and approximating the one-dimensional illumination distribution with the power polynomials to obtain the coefficients of respective terms of the power polynomials.
摘要:
An illumination optical system having a more simplified structure forms various quadrupole-shaped secondary light sources with two-time rotational symmetry with respect to an optical axis. The apparatus can provide illumination conditions that differ in two perpendicular directions on a radiation-receiving plane. In order to form a secondary light source with a quadrupole-shaped light intensity distribution on an illumination pupil plane, a diffractive optical device is provided in which an entrance light beam is converted into four light beams, and a light beam having a shape of four points centered about the optical axis is formed in a far field. The diffractive optical device is provided with a first diffractive optical member that is rotatable about a first axis parallel to the optical axis, and a second diffractive optical member that is rotatable about a second axis parallel to the optical axis, and that is arranged adjacent to the first diffractive optical member. A refractive optical device having first and second refractive optical members accomplishes similar results.
摘要:
The present invention provides an optical illumination device that permits an increase in the fill of a multiplicity of light sources that constitute a secondary source formed on an illuminated pupil plane. A fly's eye lens that forms a multiplicity of light sources from a light beam emitted by an optical integrator is disposed in the optical path between the optical integrator and an irradiation surface. The fly's eye lens comprises, in order from the light-source side, a first fly's eye member and a second fly's eye member. A cylindrical lens group arranged in a first direction is formed on each of the light source-side surface of a first fly's eye member and the light source-side surface of a second fly's eye member, and a cylindrical lens is group arranged in a second direction orthogonal to the first direction is formed on each of the irradiation surface side surface of the first fly's eye member and the irradiation surface side surface of the second fly's eye member.