摘要:
The present invention provides a line pipe of, e.g., the API standard X60 to X100 class. The line pipe has an excellent deformability, as well as excellent low temperature toughness and high productivity, a steel plate used as the material of the steel pipe. Methods for producing the steel pipe and the steel plate are also provided. In particular, a high-strength steel plate excellent in the deformability has a ferrite phase is dispersed finely, and accounts for 5% to 40% in area percentage in a low temperature transformation structure mainly composed of a bainite phase. For example, most grain sizes of the ferrite phase are smaller than the average grain size of the bainite phase. A high-strength steel pipe excellent in deformability is also provided, in which a large diameter steel pipe is produced through forming the steel plate into a pipe shape. The steel pipe has the above-referenced structure, and satisfies the conditions that YS/TS is 0.95 or less and YS×uEL is 5,000 or more. Methods for producing such steel plate and steel pipe are also provided.
摘要:
This high-strength steel pipe includes, by mass %, C: 0.02% to 0.09%, Mn: 0.4% to 2.5%, Cr: 0.1% to 1.0%, Ti: 0.005% to 0.03%, Nb: 0.005% to 0.3%, and a balance consisting of Fe and inevitable impurities, in which Si, Al, P, S, and N are limited to 0.6% or less, 0.1% or less, 0.02% or less, 0.005% or less, 0.008% or less, respectively, the bainite transformation index BT is 650° C. or less, and the microstructure thereof is a single bainite microstructure including first bainite and second bainite, the first bainite being a gathered microstructure of bainitic ferrite including no carbide, and the second bainite being a mixed microstructure of bainitic ferrite including no carbide and cementite between the bainitic ferrites.
摘要:
The present invention provides high strength steel plate and high strength welded pipe excellent in ductile fracture characteristic and methods of production of the same, that is, high strength steel plate excellent in ductile fracture characteristic, and high strength welded pipe using that steel plate as a base material, having a tensile strength corresponding to the X100 class of the API standard, containing, by mass %, C: 0.01 to 0.5%, Si: 0.01 to 3%, Mn: 0.1 to 5%, P: 0.03% or less, and S: 0.03% or less and a balance of Fe and unavoidable impurities, having a microstructure comprised of, by area ratio, 1 to 60% of ferrite and the balance of bainite and martensite, having a maximum value of the {100} accumulation degree of the cross-section rotated 20 to 50° from the plate thickness cross-section about the rolling direction as an axis of 3 or less, and having plate thickness parallel cracks measured by ultrasonic flaw detection of less than 1 mm.
摘要:
The present invention provides high strength steel plate and high strength welded pipe excellent in ductile fracture characteristic and methods of production of the same, that is, high strength steel plate excellent in ductile fracture characteristic, and high strength welded pipe using that steel plate as a base material, having a tensile strength corresponding to the X100 class of the API standard, containing, by mass %, C: 0.01 to 0.5%, Si: 0.01 to 3%, Mn: 0.1 to 5%, P: 0.03% or less, and S: 0.03% or less and a balance of Fe and unavoidable impurities, having a microstructure comprised of, by area ratio, 1 to 60% of ferrite and the balance of bainite and martensite, having a maximum value of the {100} accumulation degree of the cross-section rotated 20 to 50° from the plate thickness cross-section about the rolling direction as an axis of 3 or less, and having plate thickness parallel cracks measured by ultrasonic flaw detection of less than 1 mm.
摘要:
This high-strength steel pipe includes, by mass%, C: 0.02% to 0.09%, Mn: 0.4% to 2.5%, Cr: 0.1% to 1.0%, Ti: 0.005% to 0.03%, Nb: 0.005% to 0.3%, and a balance consisting of Fe and inevitable impurities, in which Si, Al, P, S, and N are limited to 0.6% or less, 0.1% or less, 0.02% or less, 0.005% or less, 0.008% or less, respectively, the bainite transformation index BT is 650° C. or less, and the microstructure thereof is a single bainite microstructure including first bainite and second bainite, the first bainite being a gathered microstructure of bainitic ferrite including no carbide, and the second bainite being a mixed microstructure of bainitic ferrite including no carbide and cementite between the bainitic ferrites.
摘要:
The present invention provides a thick welded steel pipe excellent in low temperature toughness in which contents of Mn and Mo satisfy (Expression 1) below, Pcm obtained by (Expression 2) below is 0.16 to 0.19, and a metal structure of a base material steel plate consists of ferrite being 30 to 95% in an area ratio and a low temperature transformation structure, and in a metal structure of a coarse-grained HAZ, an area ratio of grain boundary ferrite is 1.5% or more, the total area ratio of the grain boundary ferrite and intragranular ferrite is not less than 11% nor more than 90%, an area ratio of MA is 10% or less, and its balance is composed of bainite. 1.2325≦(0.85×[Mn]−[Mo])≦1.5215 (Expression 1) and Pcm=[C]+[Si]/30+([Mn]+[Cu]+[Cr])/20+[Ni]/60+[Mo]/15+[V]/10 (Expression 2)
摘要:
The present invention provides a thick welded steel pipe excellent in low temperature toughness in which contents of Mn and Mo satisfy (Expression 1) below, Pcm obtained by (Expression 2) below is 0.16 to 0.19, and a metal structure of a base material steel plate consists of ferrite being 30 to 95% in an area ratio and a low temperature transformation structure, and in a metal structure of a coarse-grained HAZ, an area ratio of grain boundary ferrite is 1.5% or more, the total area ratio of the grain boundary ferrite and intragranular ferrite is not less than 11% nor more than 90%, an area ratio of MA is 10% or less, and its balance is composed of bainite. 1.2325≦(0.85×[Mn]−[Mo])≦1.5215 (Expression 1) and Pcm=[C]+[Si]/30+([Mn]+[Cu]+[Cr])/20+[Ni]/60+[Mo]/15+[V]/10 (Expression 2).
摘要:
The present invention is a high strength steel pipe excellent in formability in hydroforming and similar forming methods, characterized by: containing, in mass, C of 0.0005 to 0.30%, Si of 0.001 to 2.0%, Mn of 0.01 to 3.0% and appropriate amounts of other elements if necessary, with the balance consisting of Fe and unavoidable impurities; and an average for the ratios of the X-ray strength in the orientation component group of {110} to {111} to random X-ray diffraction strength on a plane at the wall thickness center being 2.0 or more and/or a ratio of the X-ray strength in the orientation component of {110} to random X-ray diffraction strength on the plane at the wall thickness center being 3.0 or more.
摘要:
A high strength seamless steel pipe for machine structure use superior in toughness and weldability characterized by containing, by mass %, C: 0.03 to less than 0.1%, Mn: 0.8 to 2.5%, Ti: 0.005 to 0.035%, Nb: 0.003 to 0.04%, and B: 0.0003 to 0.003%, limiting Si: 0.5% or less, Al: 0.05% or less, P: 0.015% or less, S: 0.008% or less, and N: 0.008% or less, further containing one or more of Ni: 0.1 to 1.5%, Cr: 0.1 to 1.5%, Cu: 0.1 to 1.0%, and Mo: 0.05 to 0.5%, and having a balance of Fe and unavoidable impurities, the metallurgical structure being a single phase structure of self-tempered martensite or a mixed phase structure of self-tempered martensite and lower bainite.
摘要:
The present invention provides a steel sheet excellent in workability, which may be used for components of an automobile or the like, and a method for producing the same. More specifically, according to one exemplary embodiment of the present invention, a steel sheet excellent in workability, including in mass, 0.08 to 0.25% C, 0.001 to 1.5% Si, 0.01 to 2.0% Mn, 0.001 to 0.06% P, at most 0.05% S, 0.001 to 0.007% N, 0.008 to 0.2% Al, at least 0.01% Fe. The steel sheet having an average r-value of at least 1.2, an r-value in the rolling direction of at least 1.3, an r-value in the direction of 45 degrees to the rolling direction of at least 0.9, and an r-value in the direction of a right angle to the rolling direction of at least 1.2.