摘要:
A magnetic head and a recording apparatus employing the same are provided. The magnetic head includes a recording member, a field inducing member inducing a magnetic field to the recording member, a shield member having the same direction of magnetization as the recording member in a recording operation, and a return path member forming a magnetic path with the recording member.
摘要:
A bit patterned medium in which an exchange coupling layer induces exchange coupling between adjacent bits in order to reduce a switching field difference resulting from different magnetization directions of bits. The exchange coupling layer is disposed either over or under a recording layer having a plurality of bits. The exchange coupling layer induces exchange coupling between a bit which is to be recorded and an adjacent bit and reduces a switching field difference resulting from a difference between the magnetization direction of the bit to be recorded and the magnetization direction of neighboring bits due to an exchange coupling force generated during the exchange coupling.
摘要:
A perpendicular magnetic recording medium and a method of manufacturing the same are provided. The perpendicular magnetic recording medium includes a substrate, and a recording layer comprising a plurality of independent first magnetic body regions and a plurality of second magnetic body regions formed on the substrate, the second magnetic body regions separating the first magnetic body regions from each other, and being formed by implanting dopant into a region in which the first magnetic body regions are to be separated. Each of the first magnetic body regions has an L10 structure and the dopant has an ionic or molecular shape.
摘要:
Provided are a perpendicular magnetic recording medium and a method of manufacturing the same. The perpendicular magnetic recording medium includes: a substrate; a soft magnetic layer formed on the substrate; an underlayer formed on the soft magnetic layer; and a recording layer comprising a plurality of ferromagnetic layers and formed on the underlayer, wherein each of the plurality of ferromagnetic layers has a magnetic anisotropic energy which decreases as distance increases from the underlayer.
摘要:
Provided is a method of increasing recording density and a control apparatus for increasing the recording density. The method includes applying a recording current corresponding to a recording signal to a magnetic head of a hard disc drive (HDD), and limiting a current value being applied to the magnetic head to a critical value when the recording current reaches the critical value. In the method, a rising time is reduced by using an overshoot recording current and the recording current is limited to a critical value when an actual recording current reaches the critical value. Thus, write track widths (WTWs) can be reduced at a low recording frequency, thereby increasing tracks per inch (TPI).
摘要:
A magnetic recording medium, a hard disk drive (HDD) employing the same, and a method of measuring a write read (WR) offset of the HDD are provided. The magnetic recording medium includes a disk substrate and a magnetic recording layer formed on one or both surfaces of the disk substrate, wherein the magnetic recording layer comprises: at least one pattern area patterned into a plurality of data tracks wherein the at least one pattern area is formed of a patterned magnetic substance; and at least one continuous area formed of a continuous magnetic substance, wherein the continuous area is used to measure a WR offset. Accordingly, the HDD employing the magnetic recording medium can correct the WR offset of the magnetic head without requiring large modifications.
摘要:
A servo master having a pattern capable of being magnetically transferred as a servo pattern to a magnetic recording medium, wherein the servo master is formed of a material having a magnetic anisotropic constant perpendicular to a surface of the magnetic recording medium. The magnetic transfer method can include preparing a servo master patterned with a servo pattern to be formed on a magnetic recording medium, and arranging the servo master on the magnetic recording medium and applying an external magnetic field to the servo master in a first direction perpendicular to a recording surface of the magnetic recording medium, and in a second direction parallel to the recording surface of the magnetic recording medium.
摘要:
Provided is a magnetic recording medium. The magnetic recording medium includes a substrate, a recording layer disposed on the substrate for magnetic recording, and a carbon protection layer, which includes a carbon layer and a blocking layer disposed in the carbon layer to block infiltration of external impurities, disposed on the recording layer. Since the blocking layer is disposed in the carbon layer, a thickness of the carbon protection layer can be reduced while a sufficient hardness to protect the recording layer can be ensured, and moreover, a softness of the surface of the carbon protection layer can be improved.
摘要:
Provided is a perpendicular magnetic recording medium. The perpendicular magnetic recording medium includes: a substrate; a soft magnetic layer disposed on the substrate; a recording layer disposed on the soft magnetic layer; and at least one hardness enhancing layer disposed in the soft magnetic layer or interposed between the soft magnetic layer and the recording layer.
摘要:
Provided is a perpendicular magnetic recording medium. The perpendicular magnetic recording medium includes: a substrate; a plurality of soft magnetic layers including a lower soft magnetic layer and an upper soft magnetic layer which are sequentially stacked on the substrate, wherein the upper soft magnetic layer has an anisotropic field greater than that of the lower soft magnetic layer; an isolating layer interposed between the lower and upper soft magnetic layers and preventing magnetic interaction between the lower and upper soft magnetic layers; an underlayer formed on the plurality of soft magnetic layers; and a recording layer formed on the underlayer and including a plurality of ferromagnetic layers each layer of which has a magnetic anisotropic energy which decreases as distance increases from the underlayer.