摘要:
Provided are a method and apparatus for setting a routing path in a wireless sensor network. The apparatus for setting a routing path includes a neighbor table storing information of a peripheral device within wireless communication distance of a transmitter transmitting data; a searching unit sequentially searching whether at least one of an address of a destination, a parent address or ancestor address of the destination representing an address of a receiver receiving data transmitted by the transmitter exists or not in the neighbor table; and a link quality indicator (LQI) judging unit transmitting the data to the receiver when a LQI value of the address is greater than a value that is previously set in a case in which an address is searched in the searching unit.
摘要:
Provided are an apparatus and method for broadcasting data, and an apparatus and method for broadcasting response data, of a sensor node in a beacon mode in a wireless sensor network system including a plurality of nodes. According to the apparatus and method for broadcasting data, an admission application message requesting an admission of a sensor node is transmitted to the wireless sensor network system, in which time-division time slots are assigned to each of the nodes of the wireless sensor network system, wherein, in the time-division time slot, the reception function of the node is activated and sensing data is transmitted; a beacon frame is received, which includes information that indicates a broadcasting time slot among the time-division time slots, wherein, in the broadcasting time slot, the reception function of each of the nodes of the wireless sensor network system having received the admission application message, is activated at the same time; and broadcasting data is transmitted during the broadcasting time slot. Accordingly, broadcasting data can be efficiently transmitted in a beacon mode of the wireless sensor network system.
摘要:
Provided is a method for determining superframe to efficiently perform beacon scheduling by allocating superframe lengths which are different according to a routing depth of sensor nodes in a ZigBee based wireless sensor network. The method for determining a superframe for beacon scheduling, includes the steps of: receiving a beacon from a neighboring node and grasping information on a superframe used by the neighboring nodes; and determining a transmission time and a length of own superframe based on superframe information of the grasped neighboring node.
摘要:
Provided is a method for determining superframe to efficiently perform beacon scheduling by allocating superframe lengths which are different according to a routing depth of sensor nodes in a ZigBee based wireless sensor network. The method for determining a superframe for beacon scheduling, includes the steps of: receiving a beacon from a neighboring node and grasping information on a superframe used by the neighboring nodes; and determining a transmission time and a length of own superframe based on superframe information of the grasped neighboring node.
摘要:
Provided is a method for operating a network node in a specific cluster of a tree-structured network based on distributed address assignment. In the method, a non-registered node is detected. A routing depth of the network node is determined. When the determined routing depth corresponds to a reference value, a sub cluster using a cluster address is generated, and the detected non-registered node is registered as a child node in the generated sub cluster using an internal address.
摘要:
A multi-path routing method is provided a multi-path routing method for selecting appropriate multiple paths when information sensed from a source node is transmitted to a sink node in wireless sensor networks. The source node for transmitting the sensed information first transmits a Hello message to the sink node to identify the existence and position of the sink node. The sink node receives the Hello message and then re-transmits the Hello message with respect to all the received Hello messages. Respective middle nodes accumulate distances between the middle nodes while the Hello message is transmitted to the source node through a reverse path of the Hello message, and all the middle nodes maintain a real distance from the sink node. The source node receiving all the Hello messages can rout a plurality of appropriate paths through Hop-by-hop to the sink node by providing respective weights to an energy remaining amount, an appropriate transmission radius and a real distance from the sink node. Accordingly, priorities can be provided to lifetime of the source node, average energy consumption and the shortest path by adjusting the respective weights when routing the plurality of paths. In addition, appropriate paths can be routed considering the transmission success rate of a path, and a load balancing effect can be obtained using path cost.
摘要:
Provided is a method of preventing a data collision that occurs when two or more child nodes simultaneously transmit data to a parent node in a ZigBee network having a tree routing scheme and operating in a beacon mode. In the ZigBee system having the tree routing scheme and operating in the beacon mode, data communication to the parent node is performed in a beacon frame of the parent node. Here, when several child nodes exist under a single parent node, the child nodes transmit data to the parent node at the moment of receiving the beacon of the parent node, so that the data collision may occur when the child nodes simultaneously transmit the data to the parent node in the beacon frame of the parent node. In the method of preventing a data collision, each of the two or more child nodes is set to wait for its guard time (delay time) when transmitting data to the parent node to induce a normal slotted carrier sense multiple access with collision avoidance (CSMA-CA) operation. Therefore, the data collision can be prevented.
摘要:
Provided are a bridge system, a network management server, and communication methods at the bridge system and the network management server for efficient communication in a wireless sensor network (WSN). The communication method at the network management server includes communicating with bridge systems connected with a plurality of radio frequency (RF) regions within a personal area network (PAN) composed of sensor nodes using the same wireless channel, in which radio signals of the sensor nodes within the PAN reach the bridge systems, searching for a new channel to be used and an alternative bridge system which is to perform a channel change into the new channel based on information about the bridge systems upon receipt of an association failure report message from an error bridge system which is reported of an association failure from the RF region from among the bridge systems, sending a channel change request message to the found alternative bridge system, and adjusting channel information for the found alternative bridge system to the new channel and replacing information about sensor nodes connected to the found alternative bridge system with information about sensor nodes that are newly connected with the found alternative bridge system through the new channel.
摘要:
A time synchronization method in a wireless sensor network, a low power routing method using a reservation scheme, and an apparatus for performing the method are provided. The time synchronization method in the wireless sensor network may include: receiving a first synchronization request command packet from a parent node that manages time synchronization for a predetermined synchronization region; receiving, from the parent node, a second synchronization request command packet that has a transmission timestamp value of the first synchronization request command packet; and performing time synchronization for a child node based on a reception time of the first synchronization request command packet, a reception time of the second synchronization request command packet, and the transmission timestamp value of the first synchronization request command packet.
摘要:
Provided is a method of delivering data in a wireless personal area network. One of nodes forming the wireless personal area network broadcasts data including the address and the sequence number of one node to a plurality of other nodes, and broadcasts one of the data and other data to the other nodes depending on whether the data is received from the other nodes within a predetermined time. Accordingly, all the nodes on the network can receive data reliably and simultaneously power consumption is reduced, and thus the life of the network is extended.