摘要:
Engineered strains of the oleaginous yeast Yarrowia lipolytica capable of producing greater than 25% eicosapentaenoic acid (EPA, an ω-3 polyunsaturated fatty acid) in the total oil fraction are described. These strains comprise various chimeric genes expressing heterologous desaturases, elongases and acyltransferases and optionally comprise various native desaturase and acyltransferase knockouts to enable synthesis and high accumulation of EPA. Production host cells are claimed, as are methods for producing EPA within said host cells.
摘要:
Isolated nucleic acid fragments and recombinant constructs comprising such fragments encoding delta-9 elongases along with a method of making long-chain polyunsaturated fatty acids (PUFAs) using these delta-9 elongases in plants.
摘要:
Isolated nucleic acid fragments and recombinant constructs comprising such fragments encoding delta-8 desaturases along with a method of making long-chain polyunsaturated fatty acids (PUFAs) using these delta-8 desaturases in plants and oleaginous yeast.
摘要:
Engineered strains of the oleaginous yeast Yarrowia lipolytica capable of producing greater than 10% arachidonic acid (ARA, an ω-6 polyunsaturated fatty acid) in the total oil fraction are described. These strains comprise various chimeric genes expressing heterologous desaturases, elongases and acyltransferases, and optionally comprise various native desaturase and acyltransferase knockouts to enable synthesis and high accumulation of ARA. Production host cells are claimed, as are methods for producing ARA within said host cells.
摘要:
Isolated nucleic acid fragments and recombinant constructs comprising such fragments encoding delta-9 elongases along with a method of making long-chain polyunsaturated fatty acids (PUFAs) using these delta-9 elongases in plants.
摘要:
Lysophosphatidic acid acyltransferase [“LPAAT”] participates in the second step of oil biosynthesis and is expected to play a key role in altering the quantity of long-chain polyunsaturated fatty acids [“LC-PUFAs”] produced in oils of oleaginous organisms. An LPAAT isolated from Mortierella alpina [“MaLPAAT1”] that is suitable for use in the manufacture of oils enriched in LC-PUFAs in oleaginous organisms is disclosed. Most desirably, the substrate specificity of the instant MaLPAAT1 will be particularly useful to enable increased C18 to C20 elongation conversion efficiency and increased Δ4 desaturation conversion efficiency in recombinant host cells producing LC-PUFAs.
摘要:
Isolated nucleic acid fragments and recombinant constructs comprising such fragments encoding delta-9 elongases along with a method of making long-chain polyunsaturated fatty acids (PUFAs) using these delta-9 elongases in plants.
摘要:
Lysophosphatidic acid acyltransferase [“LPAAT”] participates in the second step of oil biosynthesis and is expected to play a key role in altering the quantity of long-chain polyunsaturated fatty acids [“LC-PUFAs”] produced in oils of oleaginous organisms. An LPAAT isolated from Mortierella alpina [“MaLPAAT1”] that is suitable for use in the manufacture of oils enriched in LC-PUFAs in oleaginous organisms is disclosed. Most desirably, the substrate specificity of the instant MaLPAAT1 will be particularly useful to enable increased C18 to C20 elongation conversion efficiency and increased Δ4 desaturation conversion efficiency in recombinant host cells producing LC-PUFAs.
摘要:
An engineered strain of the oleaginous yeast Yarrowia lipolytica capable of producing greater than 5.6% docosahexaenoic acid acid (DHA, an w-3 polyunsaturated fatty acid) in the total oil fraction is described. This strain comprises various chimeric genes expressing heterologous desaturases, elongases and acyltransferases and optionally comprises various native desaturase and acyltransferase knockouts to enable synthesis and high accumulation of DHA. Production host cells are claimed, as are methods for producing DHA within said host cells.
摘要:
The present invention relates to a Δ5 desaturase, which has the ability to convert dihomo-γ-linolenic acid (DGLA; 20:3 ω-6) to arachidonic acid (ARA; 20:4 ω-6) and/or eicosatetraenoic acid (ETA; 20:4 ω-3) to eicosapentaenoic acid (EPA; 20:5 ω-3). Isolated nucleic acid fragments and recombinant constructs comprising such fragments encoding Δ5 desaturase along with a method of making long chain polyunsaturated fatty acids (PUFAs) using this Δ5 desaturase in oleaginous yeast are disclosed.