Abstract:
The present invention discloses an energy storage system. The energy storage system includes M cell strings, N energy storage converters, first ends of the N energy storage converters are coupled to at least one of the M cell strings, and second ends of the N energy storage converters are configured to connect to a power grid. A first end of a first energy storage converter is coupled to Q cell strings in the M cell strings, and the first energy storage converter includes a DC/AC conversion unit and at least one DC/DC conversion unit. A first DC/DC conversion unit is coupled to at least one of the Q cell strings by using the first end of the first energy storage converter, the first DC/DC conversion unit is coupled to the DC/AC conversion unit, and the DC/AC conversion unit is coupled to the power grid by using a second end of the first energy storage converter. The first DC/DC conversion unit is configured to perform adaptation between a voltage of the DC/AC conversion unit and a voltage of a cell string. Therefore, a cell capacity is fully used, and a waste of the cell capacity is reduced.
Abstract:
This application discloses a photovoltaic direct-current breaking apparatus, including a positive connection terminal and a negative connection terminal for connecting a photovoltaic string and a photovoltaic energy converter, a first diode, a first switch, a convector circuit, and an energy absorption circuit, where the first switch, the convector circuit, and the energy absorption circuit are connected in parallel. The convector circuit can effectively avoid arc discharge and ablation generated when the first switch cuts off a direct-current circuit between the photovoltaic string and the photovoltaic energy converter. The first diode can effectively bypass energy stored by an energy storage device in the photovoltaic energy converter, helping reduce required specifications of a semiconductor device in the convector circuit. The energy absorption circuit can also effectively reduce required specifications of the semiconductor device and a varistor.
Abstract:
This application relates to the field of power technologies, and provides a photovoltaic system, which can increase a working voltage of a photovoltaic string. The photovoltaic system includes an adapter circuit, a first photovoltaic string, a second photovoltaic string, and a controller. The controller includes an inverter or a combiner box. The first photovoltaic string and the second photovoltaic string are configured to provide electric energy for the controller. The adapter circuit is configured to be connected to the first photovoltaic string in series, and further configured to connect the second photovoltaic string to the first photovoltaic string in series when a voltage of the first photovoltaic string is lower than a preset threshold.
Abstract:
A resonant converter circuit comprises a multi-level inverter circuit placed before a resonant unit, and the multi-level inverter circuit can reduce a voltage to be input to the resonant unit. The reduced input voltage of the resonant unit results in a drop in an output voltage of the entire resonant converter circuit. In this process, the final output voltage is adjusted by adjusting the input voltage of the resonant unit, with no need to substantially adjust a switching frequency of the resonant converter circuit.
Abstract:
This application discloses an inverter, including: a direct-current conversion unit, a busbar unit, and an inversion unit. The direct-current conversion unit includes a first positive input terminal, a first negative input terminal, a second positive input terminal, a second negative input terminal, a first direct current DC-to-DC module, a second DC-to-DC module, a first on/off control device, a second on/off control device, a first switch, and a second switch. The first positive input terminal and the first negative input terminal are configured to connect a first photovoltaic string, the second positive input terminal and the second negative input terminal are configured to connect a second photovoltaic string, and a connection relationship of a circuit in the direct-current conversion unit can be changed based on combinations of turning-on or turning-off of the first switch and the second switch.
Abstract:
A resonant converter includes: an input power supply, a bleeder circuit, a multi-level switching network, a resonant unit, and a transformer. The input power supply is connected to the bleeder circuit, the multi-level switching network is connected to the bleeder circuit, a clamping middle point of the multi-level switching network is connected to a middle point of the bleeder circuit; one end of the resonant unit is connected to the output terminal of the multi-level switching network, and the other end of the resonant unit is connected to one end of a primary side of the transformer; and the multi-level switching network instructs the output terminal of the multi-level switching network to output a square wave voltage with different amplitudes, to serve as an input voltage of the resonant unit, where the input voltage is used to adjust a gain of the resonant converter.
Abstract:
Embodiments of this application disclose an arc detection method for performing protection in an energy storage system, and a related apparatus, to improve accuracy of arc detection in an energy storage system, promptly take an arc extinguishing measure, and reduce a probability of causing a safety hazard. The method in the embodiments of this application includes: A control apparatus obtains an electrical signal at an electrical connection point in an energy storage system. The control apparatus determines a frequency domain amplitude based on a frequency domain characteristic of the electrical signal. When the frequency domain amplitude is greater than a preset amplitude, the control apparatus controls the energy storage system to perform an arc extinguishing and protection operation on the electrical connection point.
Abstract:
A fault detection apparatus includes an image capture module and a detection module, and the fault detection apparatus is configured to capturing an image of the photovoltaic module in a light emitting state, and performing fault detection on the photovoltaic module based on the image when a signal-to-noise ratio of the image is maximized, to identify a fault type of the photovoltaic module.
Abstract:
A wave loss detection circuit includes: an anode of the diode receives a first drive signal, and a cathode of the diode is connected to a first end of the first resistor; a second end of the first resistor is connected to a first end of the first energy storage unit, a first end of the second resistor, and a first input end of the comparison unit; a second end of the first energy storage unit and a second end of the second resistor are connected to a ground level, and a resistance of the first resistor is less than a resistance of the second resistor; a second input end of the comparison unit is configured to receive a threshold voltage, and if a voltage signal received by the first input end is less than the threshold voltage, which indicates that a wave loss occurs in the first drive signal.
Abstract:
In a detection condition determining method, a control center obtains a working parameter value of a target photovoltaic device in a first time length closest to a current time point, where the working parameter value of the target photovoltaic device may be provided for the control center by a photovoltaic inverter coupled to the target photovoltaic device. The control center detects the target photovoltaic device in response to the control center determining, based on the working parameter value, that an environmental parameter value of the target photovoltaic device meets an environmental parameter threshold. Using the method helps reduce operation and maintenance costs of a photovoltaic power station.