Abstract:
Disclosed is an inverse estimation-based radius calculation method and system for ferromagnetic target detection. The calculation method includes a data acquisition step and a ferromagnetic target detection radius calculation step. Distrubance of a scale model to power frequency electromagnetic waves is used to inversely estimate a corresponding ferromagnetic target detection radius. Inverse estimation is performed separately for an air layer and a sea water layer according to test results of multiple scale model tests and in consideration of both a stationary state and a motion state of the scale model, so as to acquire a ferromagnetic target detection radius calculation formula. Weights of factors such as mass, speed, depth, and height are great in inverse estimation, so that inverse estimation precision is improved. The majority of background noise interference can be screened out of the power frequency electromagnetic waves.
Abstract:
Provided in the present invention are a geologically constrained infrared imaging detection method and system for an urban deeply-buried strip-like passage, pertaining to the crossing fields of geophysics and remote sensing technology. The method includes: establishing an urban hierarchical three-dimensional temperature field model according to urban street DEM data and geological data corresponding to urban streets; acquiring urban stratum geological background heat flux according to the urban hierarchical three-dimensional temperature field model; using a total solar radiation energy distribution model to calculate urban surface total solar radiation energy; sequentially filtering out the urban surface total solar radiation energy and the urban stratum geological background heat flux from an infrared remote sensing image of a region corresponding to a strip-like underground target, to acquire a perturbation signal image of an urban street deeply-buried strip-like passage; and using grayscale closed-operation plus an edge detection algorithm to perform detection and positioning after preprocessing the perturbation signal image of the urban street deeply-buried strip-like passage, to acquire location information of an urban strip-like underground passage. The present invention achieves inverse detection and positioning of an urban street deeply-buried strip-like passage.
Abstract:
A zonal underground structure detection method based on sun shadow compensation is provided, which belongs to the crossing field of remote sensing technology, physical geography and pattern recognition, and is used to carry out compensation processing after a shadow is detected, to improve the identification rate of zonal underground structure detection and reduce the false alarm rate. The present invention comprises steps of acquiring DEM terrain data of a designated area, acquiring an image shadow position by using DEM, a solar altitude angle and a solar azimuth angle, processing and compensating a shadow area, and detecting a zonal underground structure after the shadow area is corrected. In the present invention, the acquired DEM terrain data is used to detect the shadow in the designated area; and the detected shadow area is processed and compensated, to reduce influence of the shadow area on zonal underground structure detection; finally, the zonal underground structure is detected by using a remote sensing image after shadow compensation, so that the accuracy of zonal underground structure detection is improved and the false alarm rate is reduced compared with zonal underground structure detection using a remote sensing image without shadow compensation processing.
Abstract:
An infrared imaging detection and positioning method for an underground building in a planar land surface environment comprises: obtaining an original infrared image g0 formed after stratum modulation is performed on an underground building, and determining a local infrared image g of a general position of the underground building in the original infrared image g0; setting an iteration termination condition, and setting an initial value h0 of a Gaussian thermal diffusion function; using the local infrared image g as an initial target image f0, and performing iteration solution of a thermal expansion function hn and a target image fn by using a maximum likelihood estimation algorithm according to the initial value h0 of the Gaussian thermal diffusion function; and determining whether the iteration termination condition is met, if the iteration termination condition is met, using the target image fn obtained by means of iteration solution this time as a final target image f; and if the iteration termination condition is not met, continuing to perform iteration calculation. In the method, by performing demodulation processing on the infrared image formed after stratum modulation is performed on the underground building, the display of the infrared image of the original underground building is clearer, and the real structure of the underground building can be inverted.
Abstract:
Methods and systems are provided for inverted detection and positioning of a strip-like subterranean tunnel in a mountain mass, pertaining to the field combining theories of the discipline of geophysics and remote sensing technology. The method includes: using a model of thermal radiation between a mountain mass and an air layer in conjunction with DEM data to calculate solar radiation energy, and iteratively filtering out background heat flow field energy of the mountain mass; calculating mountain mass background heat propagation energy with reference to hyperspectral data; using a subterranean target inversion model to filter out each layer of background heat flow field energy of the mountain mass in an infrared remote sensing image, and acquiring an optimal elevation of the strip-like subterranean tunnel in the mountain mass and a disturbance signal distribution image constructed via strip-like subterranean tunnel heat flow field energy in each layer of the mountain mass; and using a Hough transform detection method to detect a straight line in the disturbance signal distribution image, performing fitting according to the principle of relevance of tunnel engineering design to acquire a detected location of the tunnel. In this way, inverted detection and positioning of a strip-like subterranean tunnel in a mountain environment is achieved.
Abstract:
The present invention provides a method for infrared imaging detection and positioning of an underground tubular facility in a plane terrain. Demodulation processing is performed on an original infrared image formed after stratum modulation is generated on the underground tubular facility according to an energy diffusion Gaussian model of the underground tubular facility, so as to obtain a target image of the underground tubular facility. The method comprises: obtaining an original infrared image g formed after stratum modulation is generated on an underground tubular facility; setting an initial value h0 of a Gaussian thermal diffusion function according to the original infrared image g; using the original infrared image g as an initial target image f0, and performing, according to the initial value h0 of the Gaussian thermal diffusion function, iteration solution of a thermal diffusion function hn and a target image fn by by using a single-frame image blind deconvolution method based on a Bayesian theory; and determining whether an iteration termination condition is met, and if the iteration termination condition is met, determining that the target image fn obtained by means of iteration solution this time is a final target image f; and if the iteration termination condition is not met, continuing the iteration calculation. By means of the method, the display of the infrared image of the original underground tubular facility is clearer, and the real structure of the underground tubular facility can also be inverted.
Abstract:
An aircraft-based infrared image recognition device for a ground moving target, including an infrared non-uniformity correction module, an image rotation module, an image registration module, a multi-level filtering module, a connected domain labeling module, a target detection and feature recognition module, a process control module, and a FPGA-based interconnection module. The invention uses an ASIC/SoC chip for image processing and target recognition, the DSP processor and the FPGA processor, it is possible to enable a multi-level image processing and target recognition algorithm, to improve system parallel, and to facilitate an aircraft-based infrared image recognition method for a ground moving target. Meanwhile, embodiments of the invention effectively reduce power consumption of the device.
Abstract:
A geologically constrained infrared imaging detection system for an urban street deeply-buried strip-like passage includes an urban hierarchical three-dimensional temperature field model establishing module for establishing an urban hierarchical three-dimensional temperature field model according to urban street digital elevation model (DEM) data and geological data corresponding to urban streets; a total solar radiation energy calculating module for using a total solar radiation energy distribution model to calculate urban surface total solar radiation energy on the basis of the DEM data; an urban stratum geological background heat flux calculating module for calculating urban stratum geological background heat flux via the urban hierarchical three-dimensional temperature field model; an image filtering module; and a perturbation signal processing module.
Abstract:
The present invention discloses a method for stimulating a temperature field of a mountain mass containing a distributed underground facility under the influence of a seepage effect. The method comprises the following steps: establishing three-dimensional geometric models of the mountain mass and the underground facility by using contour line data extracted from elevation information, equating a seepage field with randomly and uniformly distributed “capillary tubes” of the mountain mass, abstracting mountain mass data to be a multi-way tree having a hierarchical structure, and precisely calculating the height of each “capillary tube” by using an algorithm of determining whether a point is in a closed graphic in computer graphics, thereby establishing a geometric model of an equivalent seepage field in the geometric model of the mountain mass; then, finding, through a programmed design, information about surfaces of the constructed underground facility and the “capillary tubes” by using a configuration file generated by ANSYS, and stimulating the temperature field of the mountain mass containing the distributed underground facility under the influence of the seepage field.
Abstract:
The present invention discloses a method for detecting, recognizing, and positioning a zonal underground target in a mountain land environment by detecting a ridge position in the mountain land environment and carrying out energy correction. The method belongs to the interdisciplinary field of pattern recognition, remote sensing technology and terrain analysis. The zonal underground target can cause energy abnormity when the heat field thereof is different from that of a mountain mass, and the heat island effect of the ridge can also cause the energy of the mountain mass to be abnormal. However, the energy abnormity caused by the heat island effect is essentially different from the energy abnormity caused by the zonal underground target in the aspect of mode. Therefore, the present invention aims to achieve an effect of reducing a false alarm rate of detecting and recognizing a zonal underground target in the mountain land environment by eliminating the influence of the heat body effect generated by the ridge in the terrain on the weak energy abnormity mode presented by the zonal underground target. The present invention comprises steps of acquiring digital elevation information of terrain, performing de-noising pretreatment on the digital elevation information, detecting a ridge line, correcting energy at the ridge position, and detecting the zonal underground target.