摘要:
The generation of metadata shall be simplified. Therefore, a method is presented in which a metadata-template is filled with selected essence and MD-links obtained from a list of links to essence and/or a list of current metadata. Furthermore, it is possible to obtain the MD-links from further metadata or essences directly or indirectly linked with the selected essence.
摘要:
A distributed storage system able to support real-time recording of streaming data shall be provided. Therefore, on the basis of MXF files a data stream is packed into at least a first MXF file (1) and a second MXF file (2). First connection data 1-N) are inserted into the first MXF file (1), wherein this first connection data (1-N) points to the second MXF file (2) Furthermore, second connection data (2-L) are inserted into the second MXF file (2), wherein the second connection data (2-L) points to the first MXF file (1). These connection data inserted as meta-data into the MXF files enable both seamless real-time stream recording and stream-able data playback.
摘要:
Current peer-to-peer systems are well defined for messaging and collaboration of peers running the same proprietary software and protocols, e.g. Kazaa or EDonkey. The generic framework JXTA for P2P computing provides various peer-group mechanisms and may address different applications, but provides no convenient method for exchanging messages between different peer-groups. The invention discloses a bridging concept and a delegate concept to establish communication between a first and a second peer-group, including the steps of a first peer being either a member of the first peer-group or a secondary peer relating to a primary peer, wherein the primary peer is a member of the first peer-group, sending a message to the second peer-group; a second peer being a member of the second peer-group receiving said message, detecting credentials of first peer and first peer-group, and detecting whether a connection is allowed; and if so, granting the first peer membership with the second peer-group.
摘要:
A distributed storage system able to support real-time recording of streaming data shall be provided. Therefore, on the basis of Material Exchange Format (MXF) formatted files a data stream is packed into at least a first MXF formatted file and a second formatted MXF file. First connection data are inserted into the first MXF formatted file, wherein this first connection data points to the second MXF formatted file. Furthermore, second connection data are inserted into the second MXF formatted file, wherein the second connection data points to the first MXF formatted file. These connection data inserted as metadata into the MXF formatted files enable both seamless real-time stream recording and stream-able data playback.
摘要:
The handling of metadata being provided in different formats shall be simplified. Therefore, it is suggested to provide metadata in a first metadata structure having a first format and providing a second metadata structure having a first format and providing a second metadata structure having a second format, wherein link data are deposited in the second metadata structure. The link data point to metadata in the first metadata structure. Thus, it is possible to trealize synchronous and automatic editing of metadata and its mirror metadata.
摘要:
When recording packetized real-time streaming data, e.g. multimedia data, it is in general not possible to know in advance the size of the data stream, and thus the required storage area. Therefore the storage device may be full before the data stream is completely stored. The disclosed method for storing and retrieving the remaining part of the data stream on another storage device uses metadata tags (10,11) and data buffers (IB1,IB2) to split a data stream seamlessly into chunks while recording it, and distribute the chunks in real-time to different connected storage devices (D1,D2), so that the chunks can be seamlessly concatenated again in real-time for replaying the stream. The metadata tags (10,11) contain identifiers for the successive storage node (N2) and/or the preceding storage node (N1) and for the last stored application packet.
摘要:
A logical quality-of-service management method for peer-to-peer networks uses a special group service for QoS management within peer-groups. This group service determines and assigns a budget per time unit for each peer. Such time unit may be in the range of milliseconds or few seconds. It may also determine a group budget for the peer-group. While a peer uses bandwidth, i.e. while it sends or receives data, its budget is decreased. When a peer has exhausted its budget, it has to lower its priority for transferring or receiving data. Each peer is responsible for keeping its own budget. If a peer does not keep the conditions, other peers may have the right to deny the data transfer from that peer. The QoS service function is advertised in peer-group advertisement messages.
摘要:
The handling of metadata being provided in different formats shall be simplified. Tehrefore, it is suggested to provide metadata in a first metadata structure having a first format and providing a second metadata structure having a first format and providing a second metadata structure having a second format, wherein link data are deposited in the second metadata structure. The link data point to metadata in the first metadata structure. Thus, it is possible to trealize synchronous and automatic editing of metadata and its mirror metadata.
摘要:
A logical quality-of-service management method for peer-to-peer networks uses a special group service for QoS management within peer-groups. This group service determines and assigns a budget per time unit for each peer. Such time unit may be in the range of milliseconds or few seconds. It may also determine a group budget for the peer-group. While a peer uses bandwidth, i.e. while it sends or receives data, its budget is decreased. When a peer has exhausted its budget, it has to lower its priority for transferring or receiving data. Each peer is responsible for keeping its own budget. If a peer does not keep the conditions, other peers may have the right to deny the data transfer from that peer. The QoS service function is advertised in peer-group advertisement messages.
摘要:
A data transfer in a network comprises a first node sending out a request for a particular data unit, a second node receiving and analysing the request, detecting that it may provide the requested data unit and sending to the first node a message indicating that it may provide the requested data unit, the first node receiving and selecting the message and sending a second request to the second node to request transfer of the particular data unit, and the second node transferring the particular data unit upon reception of the second request. A method for assigning a priority to such data transfer in a network comprises the first node assigning an identifier corresponding to a first priority to the request, the second node evaluating the identifier and, based on the identifier, calculating a second priority and assigning the calculated second priority to said transfer.