摘要:
A thin film transistor having an offset or a lightly doped drain (LDD) structure by self alignment and a method of fabricating the same comprises a substrate, a silicon layer disposed on the substrate and including a channel region, a source region and a drain region at both sides of the channel region, and offset regions, each offset regions disposed between the channel region and one of the source and drain regions at both sides of the channel region, a gate insulating layer covering the channel region and the offset regions disposed at both sides of the channel region excluding the source and drain regions, and a gate layer formed on the channel region excluding the offset regions. The thin film transistor has the structure in which an offset or LDD is obtained without an additional mask process.
摘要:
A thin film transistor comprises an Si-based channel having a nonlinear electron-moving path, a source and a drain disposed at both sides of the channel, a gate disposed above the channel, an insulator interposed between the channel and the gate, and a substrate supporting the channel and the source and the drain disposed at either side of the channel respectively.
摘要:
A method of preparing a semiconductor film on a substrate is disclosed. The method includes arranging an insulating substrate in a deposition chamber and depositing a semiconductor film onto the insulating substrate using ion beam deposition, wherein a temperature of the insulating substrate during the depositing does not exceed 250° C. The method can produce a thin film transistor. The disclosed ion beam deposition method forms, at lower temperature and with low impurities, a film morphology with desired smoothness and grain size. Deposition of semiconductor films on low melting point substrates, such as plastic flexible substrates, is enables.
摘要:
A method of preparing a semiconductor film on a substrate is disclosed. The method includes arranging an insulating substrate in a deposition chamber and depositing a semiconductor film onto the insulating substrate using ion beam deposition, wherein a temperature of the insulating substrate during the depositing does not exceed 250° C. The method can produce a thin film transistor. The disclosed ion beam deposition method forms, at lower temperature and with low impurities, a film morphology with desired smoothness and grain size. Deposition of semiconductor films on low melting point substrates, such as plastic flexible substrates, is enables.
摘要:
A thin film transistor comprises an Si-based channel having a nonlinear electron-moving path, a source and a drain disposed at both sides of the channel, a gate disposed above the channel, an insulator interposed between the channel and the gate, and a substrate supporting the channel and the source and the drain disposed at either side of the channel respectively.
摘要:
A thin film transistor comprises an Si-based channel having a nonlinear electron-moving path, a source and a drain disposed at both sides of the channel, a gate disposed above the channel, an insulator interposed between the channel and the gate, and a substrate supporting the channel and the source and the drain disposed at either side of the channel respectively.
摘要:
A semiconductor device and method thereof. The example method may include forming a semiconductor device, including forming a first layer on a substrate, the first layer including aluminum nitride (AlN), forming a second layer by oxidizing a surface of the first layer and forming a third layer on the second layer, the first, second and third layers each being highly oriented with respect to one of a plurality crystallographic planes. The example semiconductor device may include a substrate including a first layer, the first layer including aluminum nitride (AlN), a second layer formed by oxidizing a surface of the first layer and a third layer formed on the second layer, the first, second and third layers each being highly oriented with respect to one of a plurality crystallographic planes.
摘要:
A semiconductor device and method thereof. The example method may include forming a semiconductor device, including forming a first layer on a substrate, the first layer including aluminum nitride (AlN), forming a second layer by oxidizing a surface of the first layer and forming a third layer on the second layer, the first, second and third layers each being highly oriented with respect to one of a plurality crystallographic planes. The example semiconductor device may include a substrate including a first layer, the first layer including aluminum nitride (AlN), a second layer formed by oxidizing a surface of the first layer and a third layer formed on the second layer, the first, second and third layers each being highly oriented with respect to one of a plurality crystallographic planes.
摘要:
A security system using a laser range finder that can precisely determine an existence and a location of an intruder, and a method of detecting the intruder using the laser range finder are provided. The security system using a laser range finder, the security system includes: the laser range finder emitting laser beam, receiving the reflected laser beam, measuring a distance between the laser range finder and a target object, and detecting an existence and a location of an intruder; and at least one reflective means reflecting the emitted laser beam toward the laser beam finder, wherein at least one reflective means is spaced by a predetermined distance of the laser range finder and is installed a predetermined distance from the laser range finder.
摘要:
An electro-optic device is inserted and mounted into the internal space of the multi-layered member. Herein, the multi-layered member includes the first and second plates disposed to be separated from and facing each other. At least one of the first and second plates is manufactured with a transparent material to transmit light that is generated from the electro-optic device. Among the first and second plates of the multi-layered member, a plate corresponding to the size of a display apparatus to be manufactured is used. Consequently, by inserting and mounting a small electro-optic device into the internal space of the multi-layered member that is manufactured in a large area, a large-area display apparatus can be manufactured even without using a large-size deposition apparatus and a large-area substrate. Accordingly, the manufacturing cost of the large-area display apparatus can be saved.