Abstract:
An electronically controlled brake system having a structure capable of achieving a rapid increase in the pressure of brake oil while reducing the operation time of each pump during an active control operation. The electronically controlled brake system comprises a master cylinder assembly to provide a braking force, a plurality of brake cylinders to perform a braking operation, first and second hydraulic circuits to connect the master cylinder assembly to the plurality of brake cylinders, to define a closed circuit, and first and second pump units provided, respectively, at the first and second hydraulic circuits, to realize an active control operation. The first hydraulic circuit includes a pair of suction lines to connect a suction side of the first pump unit to the master cylinder assembly, and the second hydraulic circuit includes a pair of suction lines to connect a suction side of the second pump unit to the master cylinder assembly, each suction line being provided with a suction-side solenoid valve.
Abstract:
An electronically controlled brake system for automobiles is disclosed. This brake system has a low/intermediate pressure accumulator, which is connected to both the NC-type solenoid valves and the oil suction line so as to store pressurized oil discharged from the wheel brakes during an ABS pressure reducing mode, and feed the stored pressurized oil to the inlet of an oil pump during an ABS pressure increasing mode. This accumulator also stores pressurized oil outputted from the oil pump to feed the stored pressurized oil to the inlet of the oil pump during an ESP mode. The low/intermediate pressure accumulator of this invention thus acts as a low pressure accumulator during an ABS mode, and acts as an intermediate pressure accumulator during an ESP mode. Due to such a low/intermediate pressure accumulator, it is possible to reduce the number of parts making up the brake system.
Abstract:
A pump of an electronic brake system, in which an inlet valve has an improved structure so that the inlet valve is efficiently and stably opened. The inlet valve includes a valve sheet formed at the end of a piston, a switch member mounted on the valve sheet, an elastic member for applying elastic force for pushing the switch member toward the valve sheet, and a retainer for receiving the switch member and the elastic member, and a sheet contact portion of the switch member contacting the valve sheet has a planar surface. A protrusion extended toward the valve sheet is formed along the edge of the sheet contact portion so that the sheet contact portion linearly contacts the valve sheet. The switch member is made of plastic. The valve sheet having a disk shape, which the sheet contact portion contacts, is formed integrally with the piston.
Abstract:
A braking system for a vehicle, which can prevent an alteration in brake pedal toe force when a brake hydraulic pressure is increased or decreased based on a regenerative braking force obtained by a drive motor in an electric vehicle or hybrid vehicle, and a braking method thereof. To prevent an alteration in brake pedal toe force, the vehicle braking system includes a brake reservoir to receive brake oil therein, a normal close type valve to connect the brake reservoir to an inlet of a pump generating a hydraulic pressure in a brake line, a drive motor serving as a generator, the drive motor being adapted to convert a kinetic energy of the vehicle into electric energy to brake the vehicle by regenerative braking, and a control unit to recognize the amount of regenerative braking obtained by the drive motor and the amount of braking desired by a vehicle operator and to control the normal close type valve, so as to compensate for a brake hydraulic pressure corresponding to a difference between the regenerative braking amount and the desired braking amount by use of the brake oil in the reservoir.
Abstract:
A torque sensor including a first step formed on an inner peripheral surface of a sensor housing, a second step formed on an outer peripheral surface of a detection coil assembly, the first and second steps axially supporting each other, and a groove formed on the outer peripheral surface of the detection coil assembly at a position adjacent to the second step such that the groove faces an inner surface portion of the first step, so that the first step penetrates the groove while being plastically deformed when the detection coil assembly is pressed toward the first step, thereby causing the detection coil assembly to be fixed to the inner peripheral surface of the sensor housing. Since the detection coil assembly is fixed in the sensor housing through the structural modification of the sensor housing and detection coil assembly, without using a separate fixing member, it is possible to effectively achieve the fixing of the detection coil assembly, and thus, to reduce the number of elements in the torque sensor.
Abstract:
Disclosed herein is a solenoid valve having a valve seat assembly manufactured as a single body such that the valve seat assembly is simply fitted in a valve housing. The valve seat assembly comprises a valve seat, a filter, and a sealing plate. The valve seat assembly is disposed at one end of a housing. The valve seat comprises a first orifice formed such that the first orifice is opened and closed as a plunger is moved forward and backward, and a second orifice formed such that the second orifice is arranged in parallel with the first orifice. The sealing plate is provided at the center thereof with a through-hole, which communicates with the first orifice of the valve seat. The sealing plate is disposed in the valve seat such that the sealing plate is not separated from the valve seat by means of the filter. The sealing plate is moved toward the first orifice by the pressure of a fluid close the second orifice. In this way, the sealing plate serves as a check valve.
Abstract:
A braking system for a vehicle, which can prevent an alteration in brake pedal toe force when a brake hydraulic pressure is increased or decreased based on a regenerative braking force obtained by a drive motor in an electric vehicle or hybrid vehicle, and a braking method thereof. To prevent an alteration in brake pedal toe force, the vehicle braking system includes a brake reservoir to receive brake oil therein, a normal close type valve to connect the brake reservoir to an inlet of a pump generating a hydraulic pressure in a brake line, a drive motor serving as a generator, the drive motor being adapted to convert a kinetic energy of the vehicle into electric energy to brake the vehicle by regenerative braking, and a control unit to recognize the amount of regenerative braking obtained by the drive motor and the amount of braking desired by a vehicle operator and to control the normal close type valve, so as to compensate for a brake hydraulic pressure corresponding to a difference between the regenerative braking amount and the desired braking amount by use of the brake oil in the reservoir.
Abstract:
Disclosed herein is a mold for manufacturing a housing of a hydraulic unit of an anti-lock brake system for vehicles. The housing has a plurality of bores formed therein such that components, such as a plurality of valves, accumulators, hydraulic pumps, and a driving motor, and a plurality of connection pipes are mounted to the housing through the bores. The mold comprises a lower mold mounted in a stationary frame for defining a housing forming space where the lower part and side parts of the housing are formed, an upper mold mounted in a movable frame disposed on the stationary frame such that the movable frame is vertically moved a predetermined distance, the upper mold covering the upper part of the housing forming space of the lower mold to form the upper part of the housing, lower cores attached to the lower mold such that the lower cores are protruded from the inner lower surface of the lower mold to form the lower-side bores of the housing, an upper core attached to the upper mold for forming the upper-side bores of the housing, and a plurality of side cores disposed at the lower mold such that the side cores move into and out of the housing forming space defined in the lower mold through the lower mold in four directions to form the bores provided at the four sides of the housing. With the mold according to the present invention, a housing having a complicated structure is manufactured through injection molding of a resin material. Consequently, the housing is easily manufactured with increased productivity as compared with the conventional method of manufacturing the housing through an aluminum cutting process. Furthermore, the manufacturing costs of the housing are reduced.
Abstract:
A pump for a brake system for increasing sealing performance between a piston and a bore as well as motion performance and durability of the piston and facilitating assembling efficiency of the piston. The pump includes a bore formed in a modulator block and connected to a suction port and discharge port, a piston installed in the bore to perform rectilinear reciprocating motions and having an oil flow path to move oil suctioned through the suction port toward the discharge port, an inlet valve to open and close the oil flow path in accordance with the motions of the piston, an outlet valve to selectively allow the discharge of compressed oil, and a fixing unit having a guide member provided around the piston to be coupled to the bore and adapted to guide the motions of the piston and a sealing member provided around the piston to be coupled to the bore and adapted to keep the bore and the piston in an air-tightness state.
Abstract:
Disclosed herein is a solenoid valve having a valve seat assembly manufactured as a single body such that the valve seat assembly is simply fitted in a valve housing. The valve seat assembly comprises a valve seat, a filter, and a sealing plate. The valve seat assembly is disposed at one end of a housing. The valve seat comprises a first orifice formed such that the first orifice is opened and closed as a plunger is moved forward and backward, and a second orifice formed such that the second orifice is arranged in parallel with the first orifice. The sealing plate is provided at the center thereof with a through-hole, which communicates with the first orifice of the valve seat. The sealing plate is disposed in the valve seat such that the sealing plate is not separated from the valve seat by means of the filter. The sealing plate is moved toward the first orifice by the pressure of a fluid close the second orifice. In this way, the sealing plate serves as a check valve.