摘要:
A novel red fluorescent powder of the following formula (I): AB(MO4)2 (I) wherein A is independently Li+, Na+, K+, Rb+, Cs+, or Ag+; B is Europium of trivalent rare-earth ion (Eu3+); and M is molybdenum (Mo) or tungsten(W). The red fluorescent powder prepared by a solid-state method is used in light emitted diodes (LED), particular in white light LEDs. It has strong absorption in the near-UV wavelength of 360 nm to 420 nm, improved luminescence intensity than commercially available, high color purity, luminescent efficiency, and excellent chemical stability.
摘要:
The present invention relates to an apparatus for making a source material into a crystal fiber having different regions of polarization inversion. The apparatus of the present invention is similar to a laser-heated pedestal growth (LHPG) apparatus, characterized in that a first electric field generating device and a second electric field generating device are included. The first electric field generating device is used for providing a first external electric field which is used for poling the crystal fiber and inducing micro-swing of the crystal fiber. The second electric field generating device is disposed on a predetermined position above the first electric field generating device for providing a second external electric field to control and maintain the amplitude of the micro-swing. Whereby, the growth condition of the crystal fiber can be controlled precisely, and a uniformly and regularly periodic polarization inversion structure is fabricated.
摘要:
An inspection system is provided, which applies a forward or reverse voltage on a light-emitting device and measures a current thereof respectively before and after temperature rise, and determines whether the device fails according to the fact whether a current difference before and after the temperature rise is larger than a failure current determination value. Alternatively, the inspection system adopts a current applying device to apply a forward and reverse current on a light-emitting device and measures a voltage difference thereof respectively before and after temperature rise, and determines whether the device fails according to the fact whether a difference of the voltage differences before and after the temperature rise is larger than a failure voltage determination value. Alternatively, the inspection system adopts a predetermined inspecting step and a rapid inspecting step respectively to determine whether a light-emitting device fails. An inspection method for the inspection system is also provided.
摘要:
An inspection system is provided, which applies a forward or reverse voltage on a light-emitting device and measures a current thereof respectively before and after temperature rise, and determines whether the device fails according to the fact whether a current difference before and after the temperature rise is larger than a failure current determination value. Alternatively, the inspection system adopts a current applying device to apply a forward and reverse current on a light-emitting device and measures a voltage difference thereof respectively before and after temperature rise, and determines whether the device fails according to the fact whether a difference of the voltage differences before and after the temperature rise is larger than a failure voltage determination value. Alternatively, the inspection system adopts a predetermined inspecting step and a rapid inspecting step respectively to determine whether a light-emitting device fails. An inspection method for the inspection system is also provided.
摘要:
A light emitting diode. The light emitting diode comprises a lead frame, a plurality of light emitting chips in the lead frame, and a molding unit in an optical path of the light emitting chips, wherein the molding unit comprises a periodic microstructure.
摘要:
A light emitting diode. The light emitting diode comprises a lead frame, a plurality of light emitting chips in the lead frame, and a molding unit in an optical path of the light emitting chips, wherein the molding unit comprises a periodic microstructure.