Abstract:
The invention relates, on the one hand, to a composite material composition capable of neutralizing acid compounds and of being used under high temperature conditions, said composition being a mixture of a polymer material with a predetermined amount of reactive fillers, the mass fraction of the chemically active products ranges between 4 and 40% and the polymer material is selected from the vinylidene fluoride copolymers family, comprising a vinylidene fluoride monomer, and at least one monomer being selected from among the following monomers: hexafluoropropylene, perfluoro(methylvinyl)ether, perfluoro(ethylvinyl)ether, perfluoro (propylvinyl)ether, tetrafluoroethylene, perfluorobutylethylene, fluoropropylene, chlorotrifluoroethylene, chlorodifluoroethylene, chlorofluoroethylene, trifluoroethylene, and the monomer with the following formulation: CH2═CH—CF2—(CF2)4—CF3 and, on the other hand, to a pipe comprising at least one sheath made from the composite material composition.
Abstract:
The present invention describes a fluid which is suitable for the decontamination of heat engines which can carry out both, at the same time, the catalytic reduction of oxides of nitrogen (NOx) contained in exhaust gases and assist in the regeneration of the particulate filter (PF). The invention also describes several embodiments of said fluid.
Abstract:
The invention relates to a fluid suited for depollution of exhaust gas, notably in internal-combustion engines, allowing both to perform catalytic reduction of the nitrogen oxides (DeNOx) contained in the exhaust gas and to provide particulate filter (PAF) regeneration aid. The fluid is a homogeneous aqueous solution of a reductant or a reductant precursor for the DeNOx process, and it comprises a metallic additive for catalyzing the oxidation of exhaust gas particles. This metallic additive is a basic metal carbonate soluble in said aqueous solution. The invention also describes the preparation method and the use thereof for the depollution of exhaust gas of internal-combustion engines.
Abstract:
The gaseous effluent is contacted with an aqueous solution comprising at least one amine and at least one amine degradation inhibiting compound. A stainless steel withstanding corrosion upon contact with the amine degradation inhibiting compound is first selected. Equipments whose surfaces in contact with the aqueous solution are made from this stainless steel are used.