摘要:
The invention relates to a process for treating an hydroalcoholic feedstock comprising ethanol and butanol in order to produce an ethanol-rich effluent, a water-rich effluent and a butanol-rich effluent, comprising a) a water-ethanol separation step comprising a distillation column fed with said hydroalcoholic feedstock and comprising at least 14 theoretical plates, a molar reflux ratio of less than or equal to 1.2, a side withdrawal in the butanol accumulation zone and two injections of recycled streams resulting from steps b) and c); b) a demixing step comprising a section for mixing the stream withdrawn in step a) and the fraction withdrawn in step c), and a decanting section, the heavy phase being recycled to the distillation column of step a); c) a butanol separation step comprising a distillation column fed with the light phase resulting from step b), comprising a side withdrawal of a water/butanol/ethanol fraction recycled to the mixing section of step b) and producing a butanol-rich effluent and an ethanol-water distillate which is recycled to the distillation column of step a). This process appears to be particularly advantageous for the treatment of the hydroalcoholic effluent from the Lebedev process.
摘要:
The present invention describes a process for steam reforming natural gas, comprising a steam reforming exchanger-reactor (3000), a reactor for converting CO to CO2 (3100), and a PSA hydrogen purification unit (4300), with a view to producing a synthesis gas in which the heat necessary for the steam reforming reaction is supplied by a first combustion chamber (3100) connected to a second combustion chamber (3200) generating fumes in order to produce a very high degree of thermal integration.
摘要:
The invention relates to a plant and to a method for chemical looping oxidation-reduction combustion of a gaseous hydrocarbon feed, for example natural gas essentially containing methane. According to the invention, catalytic pre-reforming of the feed is performed in a pre-reforming zone comprising a fixed reforming catalyst, while benefiting from a heat transfer between the reduction or oxidation zone of the chemical loop and the pre-reforming zone adjoining the reduction or oxidation zone. Pre-reforming zone (130) and oxidation zone (110) or pre-reforming zone (130) and reduction zone (120) are thus thermally integrated within the same reactor (100) while being separated by at least one thermally conductive separation wall (140).
摘要:
Production of 1,3-butadiene ethanol, that is more than 50% of the total weight of feedstock: A) conversion of feedstock and of ethanol effluent from separation B to a conversion effluent being a majority of 1,3-butadiene, water and ethylene, and to a hydrogen effluent, operating at a pressure between 0.1 and 1.0 MPa, a temperature between 300 and 500° C. in the presence of at least one catalyst; B) separation of conversion effluent originating from A and hydration effluent from C to an ethanol effluent, a butadiene effluent, a water effluent and an ethylene effluent; C) hydration of ethylene fed by ethylene effluent and/or water effluent both from separation B, to produce an ethanol hydration effluent then being recycled to separation B.
摘要:
The invention relates to a process for the steam cracking of a feedstock composed of at least 80% by weight, in particular of at least 90% by weight, of ethane, the process comprising a steam cracking of the feedstock in a furnace (2), then a quenching of the pyrolysis products, then a compression operation, then a series of successive operations on the products resulting from the quenching, the said series of operations comprising a washing operation, followed by a drying operation and at least one compression operation, and finally a fractionation by cryogenic distillation. A selective hydrogenation operation, followed by a catalytic conversion operation, will be inserted into the said process, after the drying operation and before the fractionation, in order to partially convert the ethylene predominantly into propylene.
摘要:
The present invention describes a process for fractionating the gaseous fraction leaving overhead from the fractionation column of a catalytic cracking unit (FCC) using a unit for the conversion of ethylene into propylene, in order to upgrade the ethylene contained in the fuel gas.
摘要:
The invention concerns a process for the production of butadiene from an ethanol feed comprising at least 80% by weight of ethanol, comprising a step for conversion of ethanol to acetaldehyde, a step for the extraction of butadiene, a step for scrubbing gaseous by-products with water, a step for eliminating impurities and brown oils, a step for treating effluents, a first butadiene purification step, and a subsequent butadiene purification step, said ethanol feed being supplied to said butadiene extraction step, the arrangement of the steps and recycles allowing the recycles to be maximized and allowing the water and energy consumption to be minimized.
摘要:
The invention concerns a process for the production of butadiene from an ethanol feed comprising at least 80% by weight of ethanol, comprising at least one step A) for the conversion of ethanol into acetaldehyde A), a step B) for converting an ethanol/acetaldehyde mixture into butadiene, a step C1) for hydrogen treatment, a step D1) for butadiene extraction, a first butadiene purification step D2), a subsequent butadiene purification step D3), an effluent treatment step E1), a step E2) for eliminating impurities and brown oils and a step F) for scrubbing with water.
摘要:
The present invention relates to a process for the selective hydrogenation of a feed of hydrocarbons containing polyunsaturated molecules comprising at least 3 carbon atoms, using a single principal fixed bed reactor R1 containing at least two catalytic beds A1 and A2 and a fixed bed guard reactor which is reduced in size, said hydrogenation reactors being disposed in series for use in a cyclic manner in accordance with a sequence of steps which can be used to short-circuit the catalytic bed or beds of the principal reactor which have been at least partially deactivated with the aid of the guard reactor, while ensuring the continuous operation of the process.