Abstract:
A method for producing jet range hydrocarbons may include reacting at least a portion a fatty acid stream comprising C18:1 free fatty acid with ozone in an ozonolysis unit to form at least a C18:1 ozonide intermediate; introducing the C18:1 ozonide intermediate into a reactor, wherein at least a portion of the C18:1 ozonide intermediate is reacted with a reductive agent to produce oxidized products comprising azelaic acid and nonanoic acid; and introducing the oxidized products into a hydrotreating unit, wherein at least a portion of the oxidized products is hydrotreated to produce a paraffin product comprising nonane.
Abstract:
A process of preparing olefins of the formula (I) is described herein: with R1 being a substituted or unsubstituted (C1-C30)hydrocarbyl, and R2 being a substituted or unsubstituted (C1-C20)hydrocarbyl. The process includes reacting a compound of formula (II) wherein Ar is chosen from in the presence of a palladium-based catalyst and an organic solvent.A process of preparing olefins of the formula (III) is also described: with R3 being a substituted or unsubstituted (C1-C30)hydrocarbyl, R4 being a substituted or unsubstituted (C1-C20)hydrocarbyl, and R5 being a substituted or unsubstituted (C1-C30) hydrocarbyl. The process includes reacting a compound of formula (IV) wherein Ar is chosen from with a compound of formula (V) wherein Ar is chosen from in the presence of a palladium-based catalyst and an organic solvent.
Abstract:
In one embodiment, the present application discloses methods to selectively synthesize higher alcohols and hydrocarbons useful as fuels and industrial chemicals from syngas and biomass. Ketene and ketonization chemistry along with hydrogenation reactions are used to synthesize fuels and chemicals. In another embodiment, ketene used to form fuels and chemicals may be manufactured from acetic acid which in turn can be synthesized from synthesis gas which is produced from coal, biomass, natural gas, etc.
Abstract:
A process is described for making a product mixture including isobutene, propylene, 1-butene, 2-butene, 2-methyl-1-butene and 2-methyl-2-butene from a mixture of acetic acid and propionic and through reaction in the presence of a source of hydrogen and of a mixed oxide catalyst, for example, a ZnxZryOz mixed oxide catalyst. A variety of commercially valuable products may be made in turn from the various C3, C4 and C5 constituents of the product mixture.
Abstract translation:描述了从乙酸和丙酸的混合物中制备包括异丁烯,丙烯,1-丁烯,2-丁烯,2-甲基-1-丁烯和2-甲基-2-丁烯的产物混合物的方法,并通过在 存在氢源和混合氧化物催化剂,例如Zn x ZrO 2混合氧化物催化剂。 可以从产品混合物的各种C3,C4和C5组分依次制备各种商业上有价值的产品。
Abstract:
The present application discloses low temperature, low pressure methods (LTLP) for upgrading and/or stabilizing bio-oil or a bio-oil fraction. One method comprises providing a bio-oil or bio-oil fraction and hydrogen, which are reacted in the presence of a catalyst at a temperature of less than 150° C. and a pressure of less than 100 bar (absolute) to produce a hydrogenated liquid oil at a carbon yield of over 75%. Another method comprises providing a bio-oil or bio-oil fraction, providing oxygen reducing reaction conditions, and reacting the bio-oil or bio-oil fraction under the oxygen reducing reaction conditions at LTLP to produce an upgraded bio-oil product containing fewer carbonyls than the bio-oil or bio-oil fraction. Yet another method comprises providing a bio-oil or bio-oil fraction and a solution comprising one or more fermentation organisms and a sugar source. The solution and bio-oil or bio-oil fraction are combined to obtain a fermentation mixture, which is incubated at 15° C. to 30° C. for 16 to 72 hours to produce an upgraded bio-oil fermentation product containing fewer carbonyls than the bio-oil or bio-oil fraction.
Abstract:
The present invention relates to a method of using radiation and (in one embodiment) solar energy and UV radiation to convert natural products, for example derivatives of vegetable oils, to lower molecular weight hydrocarbons. The invention further relates to a process whereby these hydrocarbons can be converted to vinyl monomers and used in the formation of plastics, solvents, fuels and the like.
Abstract:
The invention provides, in a first aspect, a method for preparing a reduced metal reagent comprising the steps of providing a halide salt of a metal having a more positive reduction potential than Na in admixture with liquid Na in substantially stoichiometric quantities in the presence of an ogranic solvent characterized by boiling point, measured at atmospheric conditions, at least equal to the melting point of Na, to reduce substantially all of the halide salt to reactive metal reagent and to convert substantially all of said Na to a Na halide salt.The invention further provides, in a second aspect, a method for converting carbonylsin the presnece of the reduced metal reagent prepared in accordance with the invention.