Abstract:
A coating includes an organosiloxane polymer and a mesoporous silica material bonded with the organosiloxane polymer. A monomer of the organosiloxane polymer is and the surface of the mesoporous silica material includes a hydrophilic group. A method for manufacturing the coating includes the following steps. Provide an organosiloxane polymer polymerized from a plurality of organosiloxanes including a terminal functional group. Provide a mesoporous silica precursor including a surface functional group. The organosiloxane polymer and the mesoporous silica precursor are blended in a solution, so that the surface functional group reacts with the terminal functional group to form a bond, and a mesoporous silica material is formed, as well as the surface of the mesoporous silica material includes a hydrophilic group. A film including a thickness of 0.1-500 μm is formed by the coating.
Abstract:
Provided is a coating composition having anti-fogging and heat-insulating functions, which includes a mesoporous material, an organic polysiloxane, and co-doped tungsten oxide as shown in formula (I), MxWO3-yAy wherein M is an alkali metal element, W is tungsten, O is oxygen, A is halogen, 0
Abstract translation:本发明提供具有防雾和隔热功能的涂料组合物,其包括如式(I)所示的介孔材料,有机聚硅氧烷和共掺杂的氧化钨,M x WO 3-y A y其中M是碱金属元素, W是钨,O是氧,A是卤素,0
Abstract:
An illumination device including a base, at least one LED light source and a diffusing element is provided. The base has a supporting plane. The LED light source disposed on the supporting plane has a light emitting surface substantially parallel to the supporting plane. The diffusing element disposed on the supporting plane to cover the at least one LED light source. The diffusing element includes a first portion and a second portion. The first portion located above the at least one LED light source. The second portion connected between the first portion and the base. An optical characteristic of the first portion is different from that of the second portion so that a non-continuous boundary is defined between the first portion and the second portion.
Abstract:
A method for manufacturing a quantum dot and a quantum dot are provided. The method includes adding a core semiconductor precursor solution into a seed composition solution. The seed composition solution includes a seed composition, and the seed composition is a dendrimer-metal nanoparticle composite. The core semiconductor precursor solution includes a first semiconductor ion and a second semiconductor ion. The method also includes carrying out a first synthesis reaction to form a core semiconductor material wrapping the seed composition. The core semiconductor material is formed by combining the first semiconductor ion with the second semiconductor ion.
Abstract:
A graphene electrode, an energy storage device employing the same, and a method for fabricating the same are provided. The graphene electrode includes a metal foil, a non-doped graphene layer, and a hetero-atom doped graphene layer. Particularly, the hetero-atom doped graphene layer is separated from the metal foil by the non-doped graphene layer.
Abstract:
Provided is a coating composition having anti-fogging and heat-insulating functions, which includes a mesoporous material, an organic polysiloxane, and co-doped tungsten oxide as shown in formula (I), MxWO3-yAy wherein M is an alkali metal element, W is tungsten, O is oxygen, A is halogen, 0
Abstract translation:本发明提供具有防雾和隔热功能的涂料组合物,其包括如式(I)所示的介孔材料,有机聚硅氧烷和共掺杂的氧化钨,M x WO 3-y A y其中M是碱金属元素, W是钨,O是氧,A是卤素,0
Abstract:
An illumination device including a base, at least one LED light source and a diffusing element is provided. The base has a supporting plane. The LED light source disposed on the supporting plane has a light emitting surface substantially parallel to the supporting plane. The diffusing element disposed on the supporting plane to cover the at least one LED light source. The diffusing element includes a first portion and a second portion. The first portion located above the at least one LED light source. The second portion connected between the first portion and the base. An optical characteristic of the first portion is different from that of the second portion so that a non-continuous boundary is defined between the first portion and the second portion.
Abstract:
A coating includes an organosiloxane polymer and a mesoporous silica material bonded with the organosiloxane polymer. A monomer of the organosiloxane polymer is and the surface of the mesoporous silica material includes a hydrophilic group. A method for manufacturing the coating includes the following steps. Provide an organosiloxane polymer polymerized from a plurality of organosiloxanes including a terminal functional group. Provide a mesoporous silica precursor including a surface functional group. The organosiloxane polymer and the mesoporous silica precursor are blended in a solution, so that the surface functional group reacts with the terminal functional group to form a bond, and a mesoporous silica material is formed, as well as the surface of the mesoporous silica material includes a hydrophilic group. A film including a thickness of 0.1-500 μm is formed by the coating.