Abstract:
A tissue scaffold for use in a tendon and/or ligament is provided, which includes a weave formed by interlacing warp yarns and weft yarns, wherein the warp yarns include a plurality of fibers with an alternative shaped cross section structure, and the weave includes: a main body area with a bioactive component formed on the fiber surface, and a fixed area comprises the weft yarn having a bioceramic material. The tissue scaffold prepared in the present disclosure has the characteristics of stimulating the growth of tissues and inducing tissue repair, effectively improving the ability of tissue regeneration and bone healing, and is beneficial to the reconstruction of the tendon and/or ligament.
Abstract:
A tissue scaffold for use in a tendon and/or ligament is provided, which includes a weave formed by interlacing warp yarns and weft yarns, wherein the warp yarns include a plurality of fibers with an alternative shaped cross section structure, and the weave includes: a main body area with a bioactive component formed on the fiber surface, and a fixed area comprises the weft yarn having a bioceramic material. The tissue scaffold prepared in the present disclosure has the characteristics of stimulating the growth of tissues and inducing tissue repair, effectively improving the ability of tissue regeneration and bone healing, and is beneficial to the reconstruction of the tendon and/or ligament.
Abstract:
A tissue repair device and a method for using the same are provided. The tissue repair device includes a body portion and at least one wire. The body portion includes an inner layer and an outer layer. The inner layer is close to a tissue, wherein the inner layer includes a hydrophilic structure, and the outer layer includes a hydrophobic structure. The wire is connected to the body portion to fix the body portion to the tissue.
Abstract:
A method for preparing a hepatocyte includes the following steps: providing a liver progenitor cell, proliferating the liver progenitor cell in a medium supplemented with nicotinamide, insulin-transferrin-selenium (ITS) and EGF, and inducing the liver progenitor cell into the hepatocyte having a hepatic cord-like structure morphology. In one embodiment, the method further includes providing a pluripotent stem cell and differentiating the pluripotent stem cell into the liver progenitor cell.
Abstract:
A cell purification module, configured to purify multiple cells from a fluid sample is provided. The cell purification module includes a hollow column, multiple hollow fiber membranes, at least one first magnetic component, a fluid sample inlet end, and a fluid sample outlet end. The hollow column has a first opening, a second opening, and an accommodating space connecting the first opening and the second opening. The hollow fiber membranes are disposed in the accommodating space and each hollow fiber membrane has multiple pores. The first magnetic component is disposed at a periphery of the hollow column. The fluid sample inlet end and the fluid sample outlet end are respectively disposed at two ends of the hollow column. The hollow fiber membranes extend in an axial direction of the hollow column, and are arranged in a radial direction of the hollow column. A cell purification system is also provided.
Abstract:
Cultured hepatocytes with hepatic-cord structure and the applications were disclosed. Also the disclosure performed the method for obtaining the cultured hepatocytes with hepatic-cord structure from pluripotent stem cells and progenitor cells.