Abstract:
In an embodiment, a laser drilling apparatus adapted to a tempered glass includes a laser source, a drilling unit, a gas supply source, a heater and an air supplier. The laser source provides a laser beam. The drilling unit has a zoom lens set and a laser scanner unit. The laser beam passes through the zoom lens set and the laser scanner unit. The gas supply source supplies an air flow. The heater is disposed on a flow channel of the air flow and heats up the air flow. The air supplier has a nozzle. Both the laser beam and the heated-up air flow reach an area to be machined of the tempered glass through the nozzle. In an embodiment, a laser drilling method for the tempered glass is also provided.
Abstract:
A method and a system of detecting a tilt angle of an object surface and a method and a system of compensating the same are provided. The detecting method includes the following steps. Light beams are projected by a light source device to the object surface. An image of the object surface is captured so as to obtain light spots on the object surface. A focus program is executed by adjusting a vertical distance between the light source device and the object surface, so as to gather the light spots in a focal point on the object surface. The vertical distance is adjusted, and a correction angle between the light beams and the object surface is calculated according to the light spots.
Abstract:
A laser cleaning apparatus and a laser cleaning method are furnished, for switching the wavelengths of laser beams furnished by a single laser module using a wavelength switching module and cleaning a test piece using the laser beams having wavelengths and energy suitable for manufacturing needs. The laser cleaning method includes: creating a laser beam; switching the wavelength output by the laser based on process requirements; propagating the laser beam via an optical path propagating module for laser cleaning the test piece; and removing debris. A transfer platform allows movements of the laser beams with respect to the test piece to achieve cleaning of the entire test piece. A control module controls the wavelength switching unit, the laser beam regulating module, and the transfer platform. Total laser cleaning with improved laser cleaning quality is achieved by using these laser beams with the appropriate wavelengths and energy.
Abstract:
A method and a system of detecting a tilt angle of an object surface and a method and a system of compensating the same are provided. The detecting method includes the following steps. Light beams are projected by a light source device to the object surface. An image of the object surface is captured so as to obtain light spots on the object surface. A focus program is executed by adjusting a vertical distance between the light source device and the object surface, so as to gather the light spots in a focal point on the object surface. The vertical distance is adjusted, and a correction angle between the light beams and the object surface is calculated according to the light spots.
Abstract:
A scrap removal device for a laser processing device includes a gas deflector having an optical channel; a looped gas channel; and a looped gas outlet. The looped gas outlet is connected to the looped gas channel, the optical channel is configured for a laser beam to transmit through, the looped gas channel surrounds the optical channel, and a section of the looped gas channel close to the looped gas outlet is inclined. The scrap removal device further includes a gas source furnished on the gas deflector and in communication with the looped gas channel for providing a gas flow to flow into the looped gas channel. The gas flow is joined with the laser beam transmitting along a looped processing path when flowing out of the gas deflector through the looped gas channel and the looped gas outlet.