Abstract:
In one example, a method includes receiving, at a first time by a power switching device via an input connector of the power switching device, a signal that causes the power switching device to output a power signal to a load via an output connector of the power switching device. In this example, a voltage level of the power signal satisfies a voltage threshold at a second time that is later than the first time. In this example, the method also includes communicating, by the power switching device and during a time period between the first time and the second time, with an external device via the input connector.
Abstract:
According to an embodiment of a semiconductor device, the semiconductor device includes a power device well in a semiconductor substrate, a logic device well in the substrate and spaced apart from the power device well by a separation region of the substrate, and a minority carrier conversion structure including a first doped region of a first conductivity type in the separation region, a second doped region of a second conductivity type in the separation region and a conducting layer connecting the first and second doped regions. The second doped region includes a first part interposed between the first doped region and the power device well and a second part interposed between the first doped region and the logic device well.
Abstract:
A method for current measurement in a switching converter is described herein. In accordance with one embodiment, the method includes switching a first transistor on and off in accordance with a logic signal, wherein a load current passes through the first transistor while it is switched on. The method further includes providing—by a second transistor—a sense current that is indicative of the load current, wherein the second transistor is coupled to the first transistor so that the first and the second transistors are switched on and off simultaneously. Further, the method includes determining an end of a switch-on phase of the second transistor, and providing a current sense signal that represents the sense current between a first time instant, which corresponds to the determined end of the switch-on phase, and a second time instant, at which the logic signal signals a switch-off of the first transistor.
Abstract:
A controller circuit is configured to drive a switching element to establish a channel that electrically couples a source to an inductive element of a buck converter and generate a minimum current sample. In response to current at the switching element exceeding a target peak current threshold of a set of control parameters for the buck converter, the controller circuit is configured to generate a peak current sample, calculate a mean current using the minimum current sample and the peak current sample, and modify the set of control parameters using the mean current. In response to the switching element satisfying an off time of the set of control parameters, the controller circuit is configured to drive the switching element to establish the channel that electrically couples the source to the inductive element during an on state for a subsequent switching period.
Abstract:
According to an embodiment of a semiconductor device, the semiconductor device includes a power device well in a semiconductor substrate, a logic device well in the substrate and spaced apart from the power device well by a separation region of the substrate, and a minority carrier conversion structure including a first doped region of a first conductivity type in the separation region, a second doped region of a second conductivity type in the separation region and a conducting layer connecting the first and second doped regions. The second doped region includes a first part interposed between the first doped region and the power device well and a second part interposed between the first doped region and the logic device well.
Abstract:
A semiconductor device is disclosed. In accordance with a first aspect of the present invention the device includes a semiconductor chip having a substrate, a first supply terminal electrically coupled to the substrate to provide a first supply potential (VS) and a load current to the substrate, and a second supply terminal operably provided with a second supply potential. A first vertical transistor is integrated in the semiconductor chip and electrically coupled between the supply terminal and an output terminal. The first vertical transistor is configured to provide a current path for the load current to the output terminal in accordance with a control signal, which is provided to a gate electrode of the first vertical transistor.
Abstract:
In one example, a method includes receiving, at a first time by a power switching device via an input connector of the power switching device, a signal that causes the power switching device to output a power signal to a load via an output connector of the power switching device. In this example, a voltage level of the power signal satisfies a voltage threshold at a second time that is later than the first time. In this example, the method also includes communicating, by the power switching device and during a time period between the first time and the second time, with an external device via the input connector.
Abstract:
A system and method for providing an accurate current reference using a low-power current source is disclosed. A preferred embodiment comprises a system comprises a first section and a second section. The first section comprises a first simple current reference, an accurate current reference, and a circuit that generates a digital error signal based upon a comparison of an output of the first simple current reference and an output of the accurate current reference. The second section comprises a second simple current reference providing a second reference current, an adjustment circuit providing an adjustment current based upon the digital error signal, and a circuit biased with current equivalent to a summation of the second reference current and the adjustment current. The first simple current reference and the second simple current reference may be equivalent circuits.
Abstract:
A method for current measurement in a switching converter is described herein. In accordance with one embodiment, the method includes switching a first transistor on and off in accordance with a logic signal, wherein a load current passes through the first transistor while it is switched on. The method further includes providing—by a second transistor—a sense current that is indicative of the load current, wherein the second transistor is coupled to the first transistor so that the first and the second transistors are switched on and off simultaneously. Further, the method includes determining an end of a switch-on phase of the second transistor, and providing a current sense signal that represents the sense current between a first time instant, which corresponds to the determined end of the switch-on phase, and a second time instant, at which the logic signal signals a switch-off of the first transistor.
Abstract:
A system and method for providing an accurate current reference using a low-power current source is disclosed. A preferred embodiment comprises a system comprises a first section and a second section. The first section comprises a first simple current reference, an accurate current reference, and a circuit that generates a digital error signal based upon a comparison of an output of the first simple current reference and an output of the accurate current reference. The second section comprises a second simple current reference providing a second reference current, an adjustment circuit providing an adjustment current based upon the digital error signal, and a circuit biased with current equivalent to a summation of the second reference current and the adjustment current. The first simple current reference and the second simple current reference may be equivalent circuits.