Abstract:
A semiconductor device comprises a semiconductor substrate doped with dopants of a first type and a vertical transistor composed of one or more transistor cells. Each transistor cell has a first region formed in the substrate and doped with dopants of a second type, and the first regions form first pn-junctions with the surrounding substrate. At least a first well region is formed in the substrate and doped with dopants of a second type to form a second pn-junction with the substrate. The first well region is electrically connected to the first regions of the vertical transistor via a semiconductor switch. The semiconductor device comprises a detection circuit, which is integrated in the substrate and configured to detect whether the first pn-junctions are reverse biased. The switch is opened when the first pn-junctions are reverse biased and the switch is closed when the first pn-junctions are not reverse biased.
Abstract:
A semiconductor device includes an epitaxial layer of semiconductor material of a first conductivity type, a body region of a second (opposite) conductivity type extending into the epitaxial layer from a main surface of the epitaxial layer, a source region of the first conductivity type disposed in the body region, and a channel region extending laterally in the body region from the source region along the main surface. A charge compensation region of the second conductivity type can be provided under the body region which extends in a direction parallel to the main surface and terminates prior to a pn-junction between the source and body regions at the main surface, and/or an additional region of the first conductivity type which has at least one peak doping concentration each of which occurs deeper in the epitaxial layer from the main surface than a peak doping concentration of the device channel region.
Abstract:
A semiconductor arrangement is disclosed. The semiconductor arrangement includes: a semiconductor body and a temperature sensor (TES) integrated in the semiconductor body. The TES includes: a first semiconductor region of a first doping type arranged, in a vertical direction of the semiconductor body, between a second semiconductor region of a second doping type and a third semiconductor of the second doping type, and a contact plug ohmically connecting the first semiconductor region and the second semiconductor region. The first semiconductor region includes a base region section spaced apart from the contact plug in a first lateral direction of the semiconductor body and a resistor section arranged between the base region section and the contact plug. The resistor section is implemented such that an ohmic resistance of the resistor section between the base region section and the first semiconductor region is at least 1 MΩ.
Abstract:
A semiconductor arrangement is disclosed. The semiconductor arrangement includes: a semiconductor body and a temperature sensor (TES) integrated in the semiconductor body. The TES includes: a first semiconductor region of a first doping type arranged, in a vertical direction of the semiconductor body, between a second semiconductor region of a second doping type and a third semiconductor of the second doping type, and a contact plug ohmically connecting the first semiconductor region and the second semiconductor region. The first semiconductor region includes a base region section spaced apart from the contact plug in a first lateral direction of the semiconductor body and a resistor section arranged between the base region section and the contact plug. The resistor section is implemented such that an ohmic resistance of the resistor section between the base region section and the first semiconductor region is at least 1 MΩ.
Abstract:
Disclosed are a transistor device and a method. The transistor device includes a semiconductor body with a first surface, an inner region, and an edge region, a drift region of a first doping type in the inner region and the edge region, a plurality of transistor cells in the inner region, and a termination structure in the edge region. The termination structure includes a recess extending from the first surface in the edge region into the semiconductor body, and a floating compensation region with dopant atoms of a second doping type complementary to the first doping type in the drift region adjacent the recess.
Abstract:
A semiconductor device includes a guard structure located laterally between a first active area of a semiconductor substrate and a second active area of the semiconductor substrate. The guard structure includes a first doping region located at a front side surface of the semiconductor substrate, and a wiring structure electrically connecting the first doping region to a highly doped portion of a common doping region. The common doping region extends from a backside surface of the semiconductor substrate to at least a part of the front side surface of the semiconductor substrate in contact with the wiring structure of the guard structure. Corresponding methods for forming the semiconductor device are also described.
Abstract:
A semiconductor device includes a guard structure located laterally between first and second active areas of a semiconductor substrate. The guard structure includes a first doping region at a front side surface of the substrate and a wiring structure electrically connecting the first doping region to a highly doped portion of a common doping region. The common doping region extends from a backside surface of the substrate to at least a part of the front side surface in contact with the wiring structure. An edge termination doping region laterally surrounds the first and second active areas. The edge termination doping region and the first doping region have a first conductivity type, and the common doping region has a second conductivity type. A resistive connection between the edge termination doping region and the first doping region is present at least during reverse operating conditions of the semiconductor device.
Abstract:
According to an embodiment of a semiconductor device, the semiconductor device includes a power device well in a semiconductor substrate, a logic device well in the substrate and spaced apart from the power device well by a separation region of the substrate, and a minority carrier conversion structure including a first doped region of a first conductivity type in the separation region, a second doped region of a second conductivity type in the separation region and a conducting layer connecting the first and second doped regions. The second doped region includes a first part interposed between the first doped region and the power device well and a second part interposed between the first doped region and the logic device well.
Abstract:
A monolithic integrated circuit includes a low-voltage control circuit, a vertical power transistor, and a source follower. The vertical power transistor includes at least a drain. The source follower includes a drain that is coupled to the drain of the vertical power transistor, a gate that is coupled to a limit voltage node, and a source that is coupled to a high impedance node. The source follower is arranged such that a source voltage at the source of the source follower is a voltage-limited version of the drain voltage of the vertical power transistor. The low-voltage control circuit includes a driver and protection circuit that is arranged to detect the source voltage, to drive the vertical power transistor, and to adjust how the vertical power transistor is biased based, at least in part, on the source voltage.
Abstract:
A two-stage protection device for an electronic component protects against transient disturbances. The electronic component may be a semiconductor component, and may include one or multiple transistors and/or an integrated circuit. The protection device is connected to at least a first contact and a second contact of the electronic component, and is disposed essentially in parallel to the component that is to be protected, between the first contact and the second contact. The protection device includes a first stage with at least one diode and a second stage separated from the first stage by a resistor. The second stage includes at least one diode arrangement having two back-to-back disposed diodes which are disposed cathode-to-cathode.