Abstract:
A power control apparatus with dynamical adjustment of driving capability for converting an input power into an output power includes a transformer, a switch transistor connected to the transformer, a pulsed width modulation (PWM) driving controller generating a PWM signal and connected to the switch transistor, an isolation element, an output diode and an output capacitor. The first side coil of the transformer and the switch transistor are connected to the input power, the second side coil of the transformer is connected to the output diode and further connected to the output capacitor and an external load. The isolation element converts the output power into a feedback signal providing the PWM driving controller to dynamically control the PWM driving signal through adjustment so as to implement the optimal turn-on current for the switch transistor. Therefore, electrical performance and conversion efficiency are greatly improved by reducing the switching loss.
Abstract:
Disclosed is an integrated PFC and PWM controller with a plurality of frequency-load curves to minimize the no-load power consumption and maximize 4-point average efficiencies. The controller selects a frequency-load curve among the plurality of frequency-load and controls the PFC stage and the PWM stage to operate in HM, BM, DCM, or CCM based on the combined result from the input voltage and the output load sense signal, fetched respectively from the input terminal of the PFC stage and the output terminal of the PWM stage. The controller has the PSU operate in HM in case of no load, and operate in BM, DCM or CCM as the load increases across the flyback out rail.
Abstract:
Disclosed is a PWM controller with programmable switching frequency for PSR/SSR flyback converter so as to maximize the performance-to-cost ratio by tailor-making the switching frequency as a non-decreasing function of the output load and the maximum switching frequency as a non-increasing function of the input voltage, leading to a plurality of programmable voltage-dependent frequency-load curves, making possible the downsizing of flyback transformer while facilitating the simultaneous compliance with DoE and CoC efficiency requirements.
Abstract:
A multifunction power conversion device for dynamical detection includes an input filter unit, a transformer, a switching transistor, a driving controller, a feedback unit and an output unit. Two sensing signals from the primary and auxiliary coils of the transformer form a current sensing zero detection signal. The digital control unit of the driving controller determines if a current flowing through a secondary coil of the transformer is reduced to zero due to discharging, and further finds valley of the current of the secondary coil. The switching transistor is turned on after a preset number of the valley and then turned off by a process of current sense. Therefore, the present invention greatly reduces switching loss, increases efficiency of power conversion, and particular, enhances flexibility of application to meet actual requirements by simply updating program executed by the digital control unit.
Abstract:
A power factor correction control device for dynamically sensing and boost regulation includes a rectifying unit, a transformer, a digital regulation controller, a driving element, a sensing resistor, an output diode and an output capacitor. The control device converts an AC input power into a DC output power so as to supply an external load. The transformer includes a primary coil and an auxiliary coil, the controller employs an auxiliary voltage from the auxiliary coil to calculate the current input voltage and the current output voltage to implement feedback control for the driving element. The driving element is thus turned on and off by the controller to achieve boost function such that the output voltage is greater than the input voltage. The present invention obtains the input voltage and the output voltage by calculation without any sensing resistor, thereby reducing power consumption and increasing power conversion efficiency.
Abstract:
A power control device for dynamically adjusting frequency includes an electric transformer, a controller, a loading feedback unit, and a switching transistor. The electric transformer includes a first side induction coil connected to an input power unit, a second side induction coil connected to a loading unit to generate an output power by electromagnetic induction with the first side induction coil, and an auxiliary induction coil generating a power sensing signal by electromagnetic induction with the first side induction coil. The loading feedback unit generates a loading feedback signal. The controller determines the level of loading based on the loading feedback signal and further detects the valleys of the power sensing signal so as to change the switching signal which controls the switching transistor at the optimal one of the valleys.
Abstract:
A digital pulse width modulation controller includes a pulse width modulation controller, a selection unit having at least one selector, a comparison unit having at least one comparator, and a signal conversion unit having at least one digital-to-analog converter. The digital-to-analog converter generates a reference current and/or voltage. The comparator receives the reference current and/or voltage, and performs a comparison operation to generate a comparison signal based on a feedback signal. The selector selects one selection signal to input into the pulse width modulation controller, which receives other parameters set by a user or the system at the same time so as to control characteristics of the digital pulse width modulation signals, thereby improving the electric properties of a loading circuit.
Abstract:
A dual-mode switching power control device includes an electric transformer, a PWM driving controller, a switching transistor, an isolation element, an output diode and an output capacitor. The PWM driving controller is connected to the switching transistor coupled to the electric transformer. The first side inductor of the electric transformer and the switching transistor are coupled to an input power, and the second side inductor of the electric transformer is coupled to the output diode. The output capacitor and a load are connected in series. The output power is converted into a feedback signal by the isolation element. The PWM driving controller determines to perform DCM or CCM based on the feedback signal to control the current flowing through the electric transformer, and the output power is generated. Therefore, the efficiency of power conversion is improved and is suitable for high power applications.
Abstract:
Disclosed is a dual-mode operation controller in collocation with an input capacitor, a flyback transformer, a first primary-side switch, a second primary-side switch, a current-sensing resistor, a primary-side voltage-sensing unit, a secondary-side rectifier, and an output capacitor as a Primary-Side Regulation (PSR) flyback converter, which is dynamically controlled to operate in two operating modes, including Quasi-Resonant-Discontinuous Conduction Mode (QR-DCM) and Continuous Conduction Mode (CCM), in accordance with a loading condition so as to convert a unregulated DC input voltage source into a regulated DC output voltage source. The dual-mode operation controller has at least 5 pins, and the flyback transformer includes a primary-side winding, a secondary-side winding, and an auxiliary winding. The first primary-side and second primary-side switches are connected in series with the current-sensing resistor and placed at the low side of the primary-side winding, and the second primary-side switch is driven by the dual-mode operation controller.
Abstract:
A multifunction power conversion device for dynamical detection includes an input filter unit, a transformer, a switching transistor, a driving controller, a feedback unit and an output unit. Two sensing signals from the primary and auxiliary coils of the transformer form a current sensing zero detection signal. The digital control unit of the driving controller determines if a current flowing through a secondary coil of the transformer is reduced to zero due to discharging, and further finds valley of the current of the secondary coil. The switching transistor is turned on after a preset number of the valley and then turned off by a process of current sense. Therefore, the present invention greatly reduces switching loss, increases efficiency of power conversion, and particular, enhances flexibility of application to meet actual requirements by simply updating program executed by the digital control unit.