Abstract:
A hybrid orthogonal frequency division multiple access (OFDMA) system including a transmitter and a receiver is disclosed. The transmitter includes a first spread OFDMA subassembly, a first non-spread OFDMA subassembly and a first common subassembly. The first spread OFDMA subassembly spreads input data and maps the spread data to a first group of subcarriers. The first non-spread OFDMA subassembly maps input data to a second group of subcarriers. The first common subassembly transmits the input data mapped to the first and second group of subcarriers using OFDMA. The receiver includes a second spread OFDMA subassembly, a second non-spread OFDMA subassembly and a second common subassembly. The second common subassembly processes received data to recover data mapped to the subcarriers using OFDMA. The second spread OFDMA subassembly recovers the first input data by separating user data in a code domain and the second non-spread OFDMA subassembly recovers the second input data.
Abstract:
A method and apparatus for selecting a TFC in a wireless transmit/receive unit (WTRU) is disclosed. The WTRU estimates a transmit power for each of a plurality of available transport format combinations (TFCs). A TFC is selected for an uplink dedicated channel and a TFC is selected for an enhanced uplink (EU) channel. The TFC for the dedicated channel is selected first and independently of the TFC selection of the EU channel. The TFC for the EU channel is selected within a remaining WTRU transmit power after the TFC selection for the dedicated channel.
Abstract:
A hybrid orthogonal frequency division multiple access (OFDMA) system including a transmitter and a receiver is disclosed. The transmitter includes a first spread OFDMA subassembly, a first non-spread OFDMA subassembly and a first common subassembly. The first spread OFDMA subassembly spreads input data and maps the spread data to a first group of subcarriers. The first non-spread OFDMA subassembly maps input data to a second group of subcarriers. The first common subassembly transmits the input data mapped to the first and second group of subcarriers using OFDMA. The receiver includes a second spread OFDMA subassembly, a second non-spread OFDMA subassembly and a second common subassembly. The second common subassembly processes received data to recover data mapped to the subcarriers using OFDMA. The second spread OFDMA subassembly recovers the first input data by separating user data in a code domain and the second non-spread OFDMA subassembly recovers the second input data.
Abstract:
A hybrid orthogonal frequency division multiple access (OFDMA) wireless transmit/receive unit (WTRU) and method are disclosed. A WTRU includes a transmitter and a receiver. The receiver processes received data to recover data mapped to the subcarriers using OFDMA. The receiver recovers first input data by separating user data from multi-user spread data and recovers second input data from non-spread data.
Abstract:
Embodiments may be generally directed to techniques to utilize a protocol adaption layer (PAL) extension based on the bus protocol to enable a wireless transfer of data between a persistent storage device and a remote device and communicate, via a transceiver, the data as radio-frequency (RF) signals between the persistent storage device and the remote device utilizing the PAL extension.
Abstract:
An orthogonal frequency division multiplexing (OFDM)-code division multiple access (CDMA) system is disclosed. The system includes a transmitter and a receiver. At the transmitter, a spreading and subcarrier mapping unit spreads an input data symbol with a complex quadratic sequence code to generate a plurality of chips and maps each chip to one of a plurality of subcarriers. An inverse discrete Fourier transform is performed on the chips mapped to the subcarriers and a cyclic prefix (CP) is inserted to an OFDM frame. A parallel-to-serial converter converts the time-domain data into a serial data stream for transmission. At the receiver, a serial-to-parallel converter converts received data into multiple received data streams and the CP is removed from the received data. A discrete Fourier transform is performed on the received data streams and equalization is performed. A despreader despreads an output of the equalizer to recover the transmitted data.
Abstract:
A hybrid orthogonal frequency division multiple access (OFDMA) wireless transmit/receive unit (WTRU) and method are disclosed. A WTRU includes a transmitter and a receiver. The receiver processes received data to recover data mapped to the subcarriers using OFDMA. The receiver recovers first input data by separating user data from multi-user spread data and recovers second input data from non-spread data.