Abstract:
All in one mobile computing devices and methods performed by the devices. The all in one mobile computing device includes a processor, memory, and software instructions configured to be executed on the processor to enable the mobile computing device to perform various operations. The all in one device may include various wired and wireless interfaces that enable it to communicate with a wide-range of devices, including smartphones, tablets, laptops, personal computers, smart TVs, and others. The all in one device is capable of being remotely accessed when linked in communication with a second device, and is enabled to aggregate data from various user devices and cloud-based services to create unified data resources. Data that is accessed by the device may be synched with a cloud-based storage service to enable a user to access data from across a range of devices via the all in one device. The all in one device has a form factor that is approximately the size of a credit card, yet is capable of running a full-fledged desktop operating system.
Abstract:
According to some embodiments, a document processing unit may receive information associated with a document to be processed. The document processing unit might comprise, for example, a printer, scanner, copier, facsimile machine, or multi-function device. The document processing unit may then automatically analyze the received information in view of at least one pre-determined document policy. The document processing unit may then automatically determine, based on the analysis, whether to apply a policy action, associated with the pre-determined document policy, to the processing of the document. For example, the document processing unit might prevent a document from printing.
Abstract:
Examples may include a management authority for a software-define network (SDN) receiving telemetric data from wireless devices coupled together in a mesh network having one or more ad hoc connections between the wireless devices. The management authority may then generate a routing table based on the received telemetric data and provide a routing table for use by the wireless devices to route data within the mesh network or route data to a network coupled to the mesh network.
Abstract:
All in one mobile computing devices and methods performed by the devices. The all in one mobile computing device includes a processor, memory, and software instructions configured to be executed on the processor to enable the mobile computing device to perform various operations. The all in one device may include various wired and wireless interfaces that enable it to communicate with a wide-range of devices, including smartphones, tablets, laptops, personal computers, smart TVs, and others. The all in one device is capable of being remotely accessed when linked in communication with a second device, and is enabled to aggregate data from various user devices and cloud-based services to create unified data resources. Data that is accessed by the device may be synched with a cloud-based storage service to enable a user to access data from across a range of devices via the all in one device. The all in one device has a form factor that is approximately the size of a credit card, yet is capable of running a full-fledged desktop operating system.
Abstract:
Mobile computing device technology and systems and methods using the same are described herein. In particular, mobile computing devices that may serve as a processing component of a disaggregated computing system described, non-integral screens that may be paired with the mobile computing devices, and systems and methods using such devices and screens are described. In some embodiments, the mobile computing device technology includes a mobile computing device that lacks an integral screen, but which is capable of throwing at least video information to a non-integral target screen, e.g., via a paired connection established over a wired or wireless communication interface.
Abstract:
Techniques for implementing assess to Android applications and native Window application on Android devices and systems. A processor board includes a processor that is configured to run a full version of a Windows operating system and Windows applications. The processor board is configured to be communicatively coupled to the processor board in an Android device, such as a Smartphone or tablet. Upon operations and when the processor board is communicatively coupled to the Android device, a user of the Android device is enabled to selectively run Android applications and Windows applications, with the Windows applications being executed natively on the processor board. The processor board may be implemented in a computing card that is approximately the size of a credit card or smaller, which in turn may be coupled to the Android device via a backpack or similar means. The processor board may also be disposed within the same housing as the Android device.
Abstract:
Methods and apparatus for implementing a mode-switch protocol and mechanism for hybrid wireless display system with screencasting and native graphics throwing. Under a Mircast implementation, A Wi-Fi Direct (WFD) link is established between WFD source and sink devices, with the WFD source device configured to operate as a Miracast source that streams Miracast content to a Miracast sink that is configured to operate on the WFD sink device using a Miracast mode. The WFD source and sink devices are respectively configured as a native graphics thrower and catcher and support operation in a native graphics throwing mode, wherein the WFD source devices throw at least one of native graphics commands and native graphics content to the WFD sink device. In response to detection that Miracast content has been selected to be played on the WFD source device, the operating mode is switched to the Miracast mode. The mode may also be automatically or selectively switched back to the native graphics throwing mode. The techniques may also be applied to methods and apparatus that support other types of screencasting techniques and both wireless and wired links.
Abstract:
Techniques for implementing assess to Android applications and native Window application on Android devices and systems. A processor board includes a processor that is configured to run a full version of a Windows operating system and Windows applications. The processor board is configured to be communicatively coupled to the processor board in an Android device, such as a Smartphone or tablet. Upon operations and when the processor board is communicatively coupled to the Android device, a user of the Android device is enabled to selectively run Android applications and Windows applications, with the Windows applications being executed natively on the processor board. The processor board may be implemented in a computing card that is approximately the size of a credit card or smaller, which in turn may be coupled to the Android device via a backpack or similar means. The processor board may also be disposed within the same housing as the Android device.
Abstract:
Examples may include a management authority for a software-define network (SDN) receiving telemetric data from wireless devices coupled together in a mesh network having one or more ad hoc connections between the wireless devices. The management authority may then generate a routing table based on the received telemetric data and provide a routing table for use by the wireless devices to route data within the mesh network or route data to a network coupled to the mesh network.