Abstract:
An apparatus of a base station in a network may include a memory device and a processing device operatively coupled to the memory device. The processing device may process a message received at the base station from a macro-cell base station. The message may include a request to act as a relay for a user equipment (UE). The processing device may then determine that the base station is to act as a relay for the UE. The processing device may then generate a message comprising an indication that the base station accepted the request to act as a relay for the UE.
Abstract:
A communication device and a method for determining an information from a second device including setting an initial beamforming pattern is provided. The initial beamforming pattern includes a beamforming direction and a corresponding beamforming area for each of the plurality of antenna ports, including determining a concerned direction interval based on overlapping beamforming areas of adjacent pairs of the plurality of antenna ports, receiving a signal from the second device, measuring a signal gain from the signal on each of the plurality of antenna ports, determining which concerned direction interval the second device occupies based on an antenna port having the highest signal gain and on one of the adjacent pair of antenna ports to the antenna port having the highest signal gain having a higher signal gain, and determining the information from the second device based on the determined concerned direction interval.
Abstract:
Techniques for presenting communication between two or more stations in a WLAN environment are provided. Specifically, methods are presented, that when taken alone or together, provide a device or group of devices with an efficient way for fast rate adaptation based on full duplex functionality, increasing link and network throughput. The present disclosure includes a method that provides a fast rate adaptation by leveraging full duplex in order to get immediate channel quality feedback.
Abstract:
The 802.11ax Trigger Frame conveys information for solicited MU UL OFDM(A) transmission information. A full-duplex-capable AP can initiate another DL frame transmission(s) during the UL transmission. However, non-UL-solicited STAs may enter a low-power sleep state right after a Trigger Frame reception, and thus cannot receive the full-duplex DL transmission from the AP. Therefore, to enable OFDMA-based full-duplex communication, the AP needs to explicitly announce both scheduled UL and DL transmission(s) in the Trigger Frame.