Abstract:
An apparatus and method for efficiently managing the architectural state of a processor. For example, one embodiment of a processor comprises: a source mask register to be logically subdivided into at least a first portion to store a usable portion of a mask value and a second portion to store an indication of whether the usable portion of the mask value has been updated; a control register to store an unusable portion of the mask value; architectural state management logic to read the indication to determine whether the mask value has been updated prior to performing a store operation, wherein if the mask value has been updated, then the architectural state management logic is to read the usable portion of the mask value from the first portion of the source mask register and zero out bits of the unusable portion of the mask value to generate a final mask value to be saved to memory, and wherein if the mask value has not been updated, then the architectural state management logic is to concatenate the usable portion of the mask value with the unusable portion of the mask value read from the control register to generate a final mask value to be saved to memory.
Abstract:
An apparatus and method for performing a check on inputs to a mathematical instruction and selecting a default sequence efficiently managing the architectural state of a processor. For example, one embodiment of a processor comprises: an arithmetic logic unit (ALU) to perform a plurality of mathematical operations using one or more source operands; instruction check logic to evaluate the source operands for a current mathematical instruction and to determine, based on the evaluation, whether to execute a default sequence of operations including executing the current mathematical instruction by the ALU or to jump to an alternate sequence of operations adapted to provide a result for the mathematical instruction having particular types of source operands more efficiently than the default sequence of operations.
Abstract:
In one embodiment, the present invention includes a processor having a core with decode logic to decode an instruction prescribing an identification of a location to be monitored and a timer value, and a timer coupled to the decode logic to perform a count with respect to the timer value. The processor may further include a power management unit coupled to the core to determine a type of a low power state based at least in part on the timer value and cause the processor to enter the low power state responsive to the determination. Other embodiments are described and claimed.
Abstract:
An apparatus and method for performing a check on inputs to a mathematical instruction and selecting a default sequence efficiently managing the architectural state of a processor. For example, one embodiment of a processor comprises: an arithmetic logic unit (ALU) to perform a plurality of mathematical operations using one or more source operands; instruction check logic to evaluate the source operands for a current mathematical instruction and to determine, based on the evaluation, whether to execute a default sequence of operations including executing the current mathematical instruction by the ALU or to jump to an alternate sequence of operations adapted to provide a result for the mathematical instruction having particular types of source operands more efficiently than the default sequence of operations.
Abstract:
In one embodiment, the present invention includes a processor having a core with decode logic to decode an instruction prescribing an identification of a location to be monitored and a timer value, and a timer coupled to the decode logic to perform a count with respect to the timer value. The processor may further include a power management unit coupled to the core to determine a type of a low power state based at least in part on the timer value and cause the processor to enter the low power state responsive to the determination. Other embodiments are described and claimed.