Abstract:
An apparatus and method for performing a vector bit reversal and crossing. For example, one embodiment of a processor comprises: a first source vector register to store a first plurality of source bit groups, wherein a size for the bit groups is to be specified in an immediate of an instruction; a second source vector to store a second plurality of source bit groups; vector bit reversal and crossing logic to determine a bit group size from the immediate and to responsively reverse positions of contiguous bit groups within the first source vector register to generate a set of reversed bit groups, wherein the vector bit reversal and crossing logic is to additionally interleave the set of reversed bit groups with the second plurality of bit groups; and a destination vector register to store the reversed bit groups interleaved with the first plurality of bit groups.
Abstract:
A processor includes a decode unit to decode an instruction that is to indicate a first source packed data operand that is to include at least four data elements, to indicate a second source packed data operand that is to include at least four data elements, and to indicate one or more destination storage locations. The execution unit, in response to the instruction, is to store at least one result mask operand in the destination storage location(s). The at least one result mask operand is to include a different mask element for each corresponding data element in one of the first and second source packed data operands in a same relative position. Each mask element is to indicate whether the corresponding data element in said one of the source packed data operands equals any of the data elements in the other of the source packed data operands.
Abstract:
Apparatus, method, and system for performing a vector bit gather are describe herein. One embodiment of a processor includes: a first vector register storing one or more source data elements, a second vector register storing one or more control elements, and a vector bit gather logic. Each of the control elements includes a plurality of bit fields, each of which is associated with a plurality of corresponding bit positions in a destination vector register and is to identify a bit from the one or more corresponding source data element to be copied to each of the plurality of corresponding bit positions. The vector bit shuffle logic is to read the bit fields from the second vector register and, for each bit field, to identify a bit from the source data elements and responsively copy it to each of the plurality of corresponding bit positions in the destination vector register.
Abstract:
An apparatus and method for performing a check on inputs to a mathematical instruction and selecting a default sequence efficiently managing the architectural state of a processor. For example, one embodiment of a processor comprises: an arithmetic logic unit (ALU) to perform a plurality of mathematical operations using one or more source operands; instruction check logic to evaluate the source operands for a current mathematical instruction and to determine, based on the evaluation, whether to execute a default sequence of operations including executing the current mathematical instruction by the ALU or to jump to an alternate sequence of operations adapted to provide a result for the mathematical instruction having particular types of source operands more efficiently than the default sequence of operations.
Abstract:
A vector friendly instruction format and execution thereof. According to one embodiment of the invention, a processor is configured to execute an instruction set. The instruction set includes a vector friendly instruction format. The vector friendly instruction format has a plurality of fields including a base operation field, a modifier field, an augmentation operation field, and a data element width field, wherein the first instruction format supports different versions of base operations and different augmentation operations through placement of different values in the base operation field, the modifier field, the alpha field, the beta field, and the data element width field, and wherein only one of the different values may be placed in each of the base operation field, the modifier field, the alpha field, the beta field, and the data element width field on each occurrence of an instruction in the first instruction format in instruction streams.
Abstract:
A processor for performing a vector permute comprises: a source vector register to store a plurality of source data elements; a destination vector register to store a plurality of destination data elements; a control vector register to store a plurality of control data elements, each control data element corresponding to one of the destination data elements and including an N bit value indicating whether a source data element is to be copied to the corresponding destination data element; vector permute logic to compare the N bit value of each control data element to an N bit portion of an immediate to determine whether to copy a source data element to the corresponding destination data element, wherein if the N bit values match, then the vector permute logic is to identify a source data element using an index value included in the control data element.
Abstract:
A processor including a decode unit to receive a vector indexed load plus arithmetic and/or logical (A/L) operation plus store instruction. The instruction is to indicate a source packed memory indices operand that is to have a plurality of packed memory indices. The instruction is also to indicate a source packed data operand that is to have a plurality of packed data elements. The processor also includes an execution unit coupled with the decode unit. The execution unit, in response to the instruction, is to load a plurality of data elements from memory locations corresponding to the plurality of packed memory indices, perform A/L operations on the plurality of packed data elements of the source packed data operand and the loaded plurality of data elements, and store a plurality of result data elements in the memory locations corresponding to the plurality of packed memory indices.
Abstract:
A processor including a first vector register for storing a plurality of source data elements, a second vector register for storing a plurality of control elements, and a vector bit shuffle logic. Each of the control elements in the first vector register corresponds to a different source data element and includes a plurality of bit fields. Each of the bit fields is associated with a single corresponding bit position in a destination mask register and identifies a single bit from the corresponding source data element to be copied to the single corresponding bit position in the destination mask register. The vector bit shuffle logic is to read the bit fields from the second vector register and, for each bit field, to identify a single bit from a single corresponding source data element and copy it to a single corresponding bit position in the destination mask register.
Abstract:
A processor of an aspect includes a decode unit to decode an instruction. The instruction is to explicitly specify a first architectural register and is to implicitly indicate at least a second architectural register. The second architectural register is implicitly to be at a higher register number than the first architectural register. The processor also includes an architectural register replacement unit coupled with the decode unit. The architectural register replacement unit is to replace the first architectural register with a third architectural register, and is to replace the second architectural register with a fourth architectural register. The third architectural register is to be at a lower register number than the first architectural register. The fourth architectural register is to be at a lower register number than the second architectural register. Other processors are also disclosed, as are methods and systems.
Abstract:
An apparatus and method for performing a vector bit reversal and crossing. For example, one embodiment of a processor comprises: a first source vector register to store a first plurality of source bit groups, wherein a size for the bit groups is to be specified in an immediate of an instruction; a second source vector to store a second plurality of source bit groups; vector bit reversal and crossing logic to determine a bit group size from the immediate and to responsively reverse positions of contiguous bit groups within the first source vector register to generate a set of reversed bit groups, wherein the vector bit reversal and crossing logic is to additionally interleave the set of reversed bit groups with the second plurality of bit groups; and a destination vector register to store the reversed bit groups interleaved with the first plurality of bit groups.