Abstract:
A wireless transmit/receive unit may request, from a core network, authorization for creating one or more personal networks of one or more devices. After being granted authorization, the UE may be enabled to create a personal network and to cause a PDU session for the personal network to be established with the core network. The UE may enable members of the personal network to send data associated with the personal network via the PDU session.
Abstract:
A communication method implemented on a 3rd Generation Partnership Project (3GPP) communication network includes providing an attachment between a group member of a communication group and a group application server, detecting a detachment between the group member and the group application server, and reestablishing the attachment by the 3GPP communication network. A Mobility Management Entity (MME) may provide the attachment. A Group Communication Service Enabler Application Server (GCSE AS) or a Multipoint Service (MuSe) functionality may detect the detachment. The attachment may be reestablished according to the MuSe functionality. A group communication bearer may have a first priority level for allocating resources to the group communication bearer, and a second priority level for allocating resources to the non-group communication bearer. The second priority level may be different from the first priority level. Different Quality Control Indexes (QCIs) may be provided to the group communication bearer and the non-group communication bearer.
Abstract:
A first apparatus including: a processor, a memory; and communication circuitry. The first apparatus is connected to a communications network via the communication circuitry. The first apparatus further includes computer-executable instructions stored in the memory which, when executed by the processor, causes the first apparatus to: discover a second apparatus that the first apparatus can communicate with; obtain device information related to the second apparatus; and configure a radio protocol of the first apparatus for direct sidelink communication with the second apparatus.
Abstract:
Methods, apparatus, and systems are described for improved edge network access for a UE. According to some aspects, a UE may receive a first Data Network Name (DNN) from an application and determine, based on a Data Network Name (DNN) Replacement Rule, the first DNN is associated with a second Data Network Name (DNN), where the first DNN and the second DNN are different. The UE may determine, based on the DNN Replacement Rule, to associate traffic from the application with a Protocol Data Unit (PDU) Session, where the PDU Session may be used to send data from the application to a network and the PDU Session is associated with the second DNN.
Abstract:
Methods and apparatuses are described herein for synchronization enhancement in new radio non-terrestrial networks. In an example. a UE may determine a distance between the UE and a satellite of a NTN. The UE may determine a reference distance associated with the satellite. The UE may determine a differential delay associated with the UE based on the distance between the CE and the satellite and based on the reference distance. Based on the differential delay. the UE may determine a timing advance associated with the UE and the NTN.
Abstract:
Method and apparatus are for coordinating data flows from multiple user apparatuses, WTRUs, in a coordinated communication group. A method comprising receiving, by a non-access stratum, NAS, layer of a wireless transmit/receive unit, WTRU, and from an application server, a coordination identifier; sending, by the WTRU and to a core network entity, a request to establish a protocol data unit, PDU, session, wherein the request comprises the coordination identifier; receiving, by the WTRU, configuration information associated with the coordination identifier and the PDU session, wherein the configuration information comprises one or more rules associated with the PDU session that are to be coordinated with one or more rules associated with other PDU sessions; and receiving, by the WTRU, from the core network entity, a message indicating establishment of the PDU session.
Abstract:
Procedures, mechanisms, methods, and techniques are provided that trigger power saving mode (PSM) functionality in the at least one wireless transmit receive units, group of WTRUs or subset of the group of WTRUs. The trigger may be in response to an application layer request to set one or more predetermined PSM settings, wherein the trigger originates from one or more application servers (APs) directed to a core network by way of an interface such as an SCEF that may be included on a device (e.g., a gateway, computing device, and/or the like) and may be configured for enabling the application server to request enabling and disabling PSM functionality.
Abstract:
A communication method implemented on a 3rd Generation Partnership Project (3GPP) communication network includes providing an attachment between a group member of a communication group and a group application server, detecting a detachment between the group member and the group application server, and reestablishing the attachment by the 3GPP communication network. A Mobility Management Entity (MME) may provide the attachment. A Group Communication Service Enabler Application Server (GCSE AS) or a Multipoint Service (MuSe) functionality may detect the detachment. The attachment may be reestablished according to the MuSe functionality. A group communication bearer may have a first priority level for allocating resources to the group communication bearer, and a second priority level for allocating resources to the non-group communication bearer. The second priority level may be different from the first priority level. Different Quality Control Indexes (QCIs) may be provided to the group communication bearer and the non-group communication bearer.
Abstract:
Methods, systems, and. devices may assist in new radio (NR) sidelink (SL) operation in licensed or unlicensed spectrum. In an example, if listen-before-talk (LBT) failure rate is low, then implicit acknowledgement (ACK) and explicit non-acknowledgement (NACK) may be used. A first SL timer may start when a. SL transport block is transmitted. If no explicit NACK, is received before the SL timer expires, then ACK. may be assumed. If LBT failure rate is high, then explicit ACK and implicit NACK may be used. A second SL timer may start. If no explicit ACK is received before the SL timer expires, then NACK may be assumed.
Abstract:
The exchange of resource allocation assistance information between a requester User Equipment (UE) and an assistant UE allows the requester to make better resource allocation decisions. The assistance information may include a blacklist, a whitelist, resource allocation information, a candidate resource set, and measurement information, for example. Both UEs may have an assistance configuration to assist in the exchange of resource allocation assistance information, that may be obtained from a third apparatus, such as a base station. The configuration may include information related to when to trigger assistance, identities of UEs, and types of assistance information, for example. The requester may, based on the assistance information received, modify a candidate resource set at a Medium Access Control (MAC) layer. The requester may, at the MAC layer, determine a configured sidelink grant for a selected destination using assistance information targeting this destination.