Abstract:
An electrostatic discharge protection circuit for an integrated circuit that reduces unwanted transient currents during normal operations. In one embodiment, the electrostatic discharge protection circuit includes one or more electrostatic bus lines, a plurality of signal bonding pads and charge pumps. The one or more electrostatic bus lines are used to direct electrostatic discharge around internal circuitry. The plurality of signal bonding pads are used to receive external voltage signals. Each signal bonding pad is coupled to an associated electrostatic bus line via an unidirectional conducting device. A charge pump is used on each electrostatic bus line to precharge its associated electrostatic bus line to an associated predetermined voltage level. The precharging of each electrostatic bus line to its predetermined voltage level reduces transient currents through the unidirectional conducting devices when external voltage signals having voltage levels beyond normal supply voltage ranges are applied to the signal bonding pads.
Abstract:
The present invention relates to integrated circuits having symmetric inducting devices with a ground shield. In one embodiment, a symmetric inducting device for an integrated circuit comprises a substrate, a main metal layer and a shield. The substrate has a working surface. The main metal layer has at least one pair of current path regions. Each of the current path region pairs is formed in generally a regular polygonal shape that is generally symmetric about a plane of symmetry that is perpendicular to the working surface of the substrate. The shield is patterned into segments that are generally symmetric about the plane of symmetry. Medial portions of at least some segments of the shield are formed generally perpendicular to the plane of symmetry as the medial portions cross the plane of symmetry.
Abstract:
The present invention relates to integrated circuits having symmetric inducting devices with a ground shield. In one embodiment, a symmetric inducting device for an integrated circuit comprises a substrate, a main metal layer and a shield. The substrate has a working surface. The main metal layer has at least one pair of current path regions. Each of the current path region pairs is formed in generally a regular polygonal shape that is generally symmetric about a plane of symmetry that is perpendicular to the working surface of the substrate. The shield is patterned into segments that are generally symmetric about the plane of symmetry. Medial portions of at least some segments of the shield are formed generally perpendicular to the plane of symmetry as the medial portions cross the plane of symmetry.
Abstract:
A reference current/voltage gnereator is insensitive to variations in power supply voltage and temperature. The operational parameters of matched current mirror transistors of the generator are effectively equalized by an auxiliary bias amplifier, whose transistors are matched with and connected to the current mirror transistors of the generator in such a manner as to maintain the same electrical parameters in each of the current mirror legs of the current generator, irrespective of variations in supply voltage. Temperature insensitivity is achieved by making the output current mirror a current that is the sum of two currents whose current paths complementary temperature coefficients.