摘要:
A heat dissipation element for cooling an electronic device is disclosed. The heat dissipation element has a top surface and a bottom surface for mounting the electronic device to be cooled thereto. The top surface defines a heat dissipation area for dissipating heat from the electronic device and a plurality of heat transfer fins project upwardly from the top surface and are coextensive with the heat dissipation area. Each of the heat transfer fins defines a plurality of steps having a rise and a run and each of the steps extend across the heat dissipation area for maximizing an amount of heat dissipated from the electronic device. The heat dissipation element is particularly useful in either one of a cold plate assembly used with a liquid cooled unit (LCU) or a boiler plate assembly used with a thermosiphon cooling unit (TCU).
摘要:
A thermosiphon assembly for dissipating heat generated by an electronic component using a working fluid is disclosed. The assembly includes an evaporator having a front face, a rear face, and a peripheral wall extending between the front face and the rear face and being arcuate. A heat block contacts the front face for transferring generated heat from the electronic component to the working fluid to vaporize the working fluid. A condenser is in fluid communication with the chamber and connected to the rear face for condensing the vaporized working fluid back to a liquid. The assembly further includes an acute angle between the front face and the peripheral wall such that the chamber extends upwardly at an angle from the front face to the rear face to ensure complete coverage of the heat block with the cooling fluid in any position between horizontal and vertical.
摘要:
A heat sink assembly for cooling an electronic device comprises a fan housed in a shroud, the fan including a hub and fan blades extending therefrom for causing an axially directed airflow through the shroud upon rotation of the fan blades. A thermosiphon comprises an evaporator defining an evaporating chamber containing a working fluid therein and further including a condenser mounted thereabove. The thermosiphon is positioned at one end of the shroud such that the fan is aligned with the condenser for directing the axial airflow therethrough. The condenser includes a plurality of tubes forming a tube grouping. Each tube having an opening in fluid communication with the evaporator and for receiving and condensing vapor of the working fluid received from the evaporator. The tubes are axially aligned with the airflow and are laterally positioned such that a lateral width of the tube grouping is approximately equal to a width of the hub and substantially in lateral alignment therewith.
摘要:
A thermosiphon for cooling an electronic device having a mean width of dimension “b” comprises a boilerplate having a top surface and including a plurality of pyramid shaped fins projecting upwardly from the top surface. The boilerplate also has a bottom surface for receiving the electronic device to be cooled. A plurality of spaced apart condenser tubes is mounted above the boilerplate such that the boilerplate and the condenser tubes define a vapor chamber therebetween for receiving a working fluid therein. A plurality of convoluted fins extends between each adjacent pair of condenser tubes.
摘要:
A heat sink assembly for removing heat from an electronic device and comprising a base, a lid in spaced relationship with and parallel to the base, and an outer wall spiraling radially outwardly about an inlet axis from an inner exit position to an outer exit position to define a tangential outlet between said exit positions. Each of a plurality of curved fins presents a concave surface and a convex surface and extends from an inner circle with radius concentric with the inlet axis to an outer circle with radius concentric with the inlet axis to define a plurality of curved channels between adjacent fins for directing the flow of cooling fluid radially from the inlet axis. Each of the curved channels is disposed at a constant distance between next adjacent fins for a major length there along from the inner circle with radius toward the outer circle with radius. That substantially constant distance extends from the inner circle with radius to a perpendicular position where the convex surface of that fin is perpendicular to the intersection of the outer circle with radius with the next adjacent fin to the convex surface.
摘要:
A fluid heat exchanger assembly cools an electronic device with a cooling fluid supplied from a heat extractor (R, F) to an upper portion of a housing. A refrigerant is disposed in a lower portion of the housing for liquid-to-vapor transformation. A partition divides the upper portion of the housing from the lower portion and flow interrupters are disposed in the upper portion for interrupting thermal boundary layer to enhance thermal heat transfer to the flow of liquid coolant through the coolant passage of the upper portion in response to heat transferred by an electronic device to the lower portion of the housing.
摘要:
A cooling assembly having a base plate and a condenser plate. An outer wall interconnects the base plate to the condenser plate to define a sealed chamber with a working fluid being disposed within the sealed chamber. Intersecting partition walls are mounted to the condenser plate and are angled downwardly toward the base plate for directing working fluid on the condenser plate down a corner of the walls toward a portion of the base plate. Preferably, the base plate defines a first circumference and the condenser plate defines a second circumference larger than the first circumference such that the outer wall has an angled configuration extending between the base plate and the condenser plate to provide a larger area within the sealed chamber for a vapor phase of the working fluid than a liquid phase of the working fluid.
摘要:
A CPU cooling assembly having a first, covering layer of conductive material above the upper surface of an enclosed, heat producing chip and a third, upper layer of conductive material (a heat sink base plate) thermally bonded to the first by an intermediate, second layer of thin, conforming material (thermal grease) that is far less thermally conductive, and more resistive, than the other two layers. The relative thickness relationship of the first and third, more conductive, layers is essentially reversed from the prior art, with first layer being relatively thicker than the third. This creates an overall lower resistance for the three layer sandwich.
摘要:
A heat sink assembly for cooling an electronic device comprises a fan housed in a shroud, the fan including a hub and fan blades extending therefrom for causing an axially directed airflow through the shroud upon rotation of the fan blades. A thermosiphon comprises an evaporator defining an evaporating chamber containing a working fluid therein and further including a condenser mounted thereabove. The thermosiphon is positioned at one end of the shroud such that the fan is aligned with the condenser for directing the axial airflow therethrough. The condenser includes a base having an upper surface and a plurality of fins extending substantially upwardly from the upper surface. The condenser also includes a plurality of tubes forming a tube grouping. Each tube having an opening in fluid communication with the evaporator and for receiving and condensing vapor of the working fluid received from the evaporator. The tubes are axially aligned with the airflow and are laterally positioned such that a lateral width of the tube grouping is approximately equal to a width of the hub and substantially in lateral alignment therewith.
摘要:
A thermosiphon cooling assembly cools an electronic device with a conical condensing tube disposed about a curved central axis curving upwardly from a top of the evaporating unit to an upper distal end and a shroud disposed outward of an exterior surface of the condensing tube at the upper distal end extending axially along the central axis from the upper distal end to a lower edge spaced from the top defining an air opening. An air moving device moves air about the central axis within the shroud to the air opening. A plurality of condensing fins are disposed in the condensing tube and each condensing fin forms a pair of corners with an interior surface of the condensing tube and a wick material is disposed in each of the corners to return condensed vapor to the evaporating unit.