Bipolar exfoliation of black phosphorous into phosphorene

    公开(公告)号:US10676357B1

    公开(公告)日:2020-06-09

    申请号:US16361332

    申请日:2019-03-22

    摘要: A single-step, in situ bipolar exfoliation system, and methods for exfoliations of multi-layer bulk black phosphorous into single-layer (two-dimensional), few-layer, or even nano-platelets phosphorene are provided. The bipolar exfoliation system can include: a first driving electrode; a second driving electrode electrically connected to the first driving electrode through an external power supply; at least one bipolar electrode comprising multi-layer bulk black phosphorous; and a solvent in physical contact with the first driving electrode, the second driving electrode, and the at least one bipolar electrode. The system can be configured such that the electric conditions between the first and second driving electrodes can be used to turn one end of the at least one bipolar electrode into an anodic pole and the other end of the at least one bipolar electrode into a cathodic pole such that the multi-layer black phosphorous is exfoliated into the single-layer, few-layer, or nano-platelets phosphorene.

    Multi-modal pressure sensor
    6.
    发明授权

    公开(公告)号:US12092536B1

    公开(公告)日:2024-09-17

    申请号:US18300745

    申请日:2023-04-14

    IPC分类号: G01L1/18 A61B5/00

    摘要: The subject invention is concerned with systems and methods advantageously applying finite element analysis to establish design rules for a highly sensitive piezo-resistive pressure sensor with an output that is high enough to be detectable by simple and inexpensive circuits and therefore ensure wearability. Four frequently reported micro-feature shapes in micro-patterned piezo-resistive sensors are provided, where the micro-dome and micro-pyramid yield the highest sensitivity. Investigations of different conductivity values of micro-patterned elastomers show that coating the elastomer with a conductive material (e.g., a metallic coating) leads to higher current response when compared to composited conductive elastomers. Advantageous geometric parameters and spatial configurations of micro-pyramid design of piezo-resistive sensors are provided. Results show that an enhanced sensitivity and higher current output can be achieved by a lower spatial density configuration of three micro-features per millimeter length, a smaller feature size of around 100 μm, and a 60-50 degrees pyramid angle.