Abstract:
The present invention discloses an active organic light emitting diode (AOLED) display structure. A color filter and thin film transistor organic light emitting diode (TFT-OLED) are incorporated on one substrate of the AOLED. Moreover, a Indium Tin Oxide(ITO)layer of the AOLED is deposited with a black matrix layer so as to lower light leakage effect and increase the contrast and color purity level in between pixels of the display. By adopting such technology, a flat panel display having large area, high resolution and low product cost is accordingly implemented.
Abstract:
A method of forming a flexible thin film transistor (TFT) display device. A metal foil serving as a flexible metal substrate of a display device is provided, wherein the metal foil is an aluminum alloy foil, a titanium foil or a titanium alloy foil. The thickness of the metal foil is 0.05null0.8 mm. An insulation layer is formed on the flexible metal substrate. A thin film transistor (TFT) array is formed on the insulation layer. In addition, the aluminum alloy foil can include magnesium of 0.01null1% wt and/or silicon of 0.01null1% wt and the titanium alloy foil can include aluminum of 0.01null20% wt and/or molybdenum of 0.01null20% wt.
Abstract:
The present invention relates to a heating plate crystallization method used in the crystallization process for the poly-silicon thin-film transistor, and more particularly, the present invention relates to a heating plate crystallization method by using a pulsed rapid thermal annealing process (PRTP) By means of the characteristic provided by the present invention, namely, the heating plate area has a better absorption rate to the infrared rays and has a high thermal stability. The heating plate area is used for absorbing the infrared rays, and after the heating, the energy is indirectly transferred to the amorphous layer via a thermal conduction method so that the amorphous layer will be rapidly crystallized to form the poly-silicon. Furthermore, the present invention uses the pulsed rapid thermal annealing process (PRTP) using the infrared rays to instantly heat, to selectively heat the materials by taking the advantage that different materials have different absorption rates to the infrared rays. However, the glass substrate and the amorphous cannot effectively absorb the infrared rays so that the glass substrate will not be broken while the process temperature of the heating plate area is excessively high (>70null C.). Therefore, the most effective rapid thermal crystallization can be achieved.