Abstract:
A microphone includes a first signal input, a second signal input and a control unit coupled to the first signal input and the second signal input. The control unit is configured to, upon receiving a support signal at one of the first signal input and second signal input, process a signal received at the other of the first signal input and second signal input as an incoming data signal.
Abstract:
Embodiments of the present invention provide a socket that comprises a socket body. The socket body forms a socket cavity for receiving a plug. The socket further comprises an acoustic device and a sound port. The sound port is disposed in the socket body for acoustically coupling the acoustic device with the cavity.
Abstract:
A MEMS microphone includes a first diaphragm element, a counter electrode element, and a low pressure region between the first diaphragm element and the counter electrode element. The low pressure region has a pressure less than an ambient pressure.
Abstract:
A MEMS microphone includes a first diaphragm element, a counter electrode element, and a low pressure region between the first diaphragm element and the counter electrode element. The low pressure region has a pressure less than an ambient pressure.
Abstract:
A microphone includes a first signal input, a second signal input and a control unit coupled to the first signal input and the second signal input. The control unit is configured to, upon receiving a support signal at one of the first signal input and second signal input, process a signal received at the other of the first signal input and second signal input as an incoming data signal.
Abstract:
According to an embodiment, a method of measuring wind speed includes measuring atmospheric pressure at a first pressure sensor arranged inside a case and shielded from wind, measuring air pressure at a second pressure sensor arranged at an opening in the case, and determining wind speed at the opening in the case based on measuring the atmospheric pressure and the air pressure.
Abstract:
According to an embodiment, a device includes a substrate, a transducer die disposed over the substrate, a cover disposed over the transducer die, and a support structure connecting the cover to the substrate. The support structure includes a port configured to allow transfer of fluidic signals between an ambient environment and the transducer die.
Abstract:
A MEMS microphone includes a first diaphragm element, a counter electrode element, and a low pressure region between the first diaphragm element and the counter electrode element. The low pressure region has a pressure less than an ambient pressure.
Abstract:
According to an embodiment, a device includes a substrate, a transducer die disposed over the substrate, a cover disposed over the transducer die, and a support structure connecting the cover to the substrate. The support structure includes a port configured to allow transfer of fluidic signals between an ambient environment and the transducer die.
Abstract:
According to an embodiment, a method of measuring wind speed includes measuring atmospheric pressure at a first pressure sensor arranged inside a case and shielded from wind, measuring air pressure at a second pressure sensor arranged at an opening in the case, and determining wind speed at the opening in the case based on measuring the atmospheric pressure and the air pressure.