Abstract:
An optical system and photo sensor pixel are provided. The photo sensor pixel includes a substrate including an active region and a peripheral region that is peripheral to the active region, an optical sensor disposed at the active region of the substrate and configured to receive light and output a measurement signal based on the received light, and an encapsulation layer disposed over the active region and the first peripheral region of the substrate. The encapsulation layer includes at least one subwavelength-based graded index structure provided over the peripheral region of the substrate, and the subwavelength-based graded index structure is configured to redirect the light from a region over the peripheral region onto the optical sensor.
Abstract:
In a method for producing a buried cavity in a semiconductor substrate, trenches are produced in a surface of a semiconductor substrate down to a depth that is greater than cross-sectional dimensions of the respective trench in a cross section perpendicular to the depth, wherein a protective layer is formed on sidewalls of the trenches. Isotropic etching through bottom regions of the trenches is carried out. After carrying out the isotropic etching, the enlarged trenches are closed by applying a semiconductor epitaxial layer to the surface of the semiconductor substrate.
Abstract:
A capacitive microelectromechanical device is provided. The capacitive microelectromechanical device includes a semiconductor substrate, a support structure, an electrode element, a spring element, and a seismic mass. The support structure, for example, a pole, suspension or a post, is fixedly connected to the semiconductor substrate, which may comprise silicon. The electrode element is fixedly connected to the support structure. Moreover, the seismic mass is connected over the spring element to the support structure so that the seismic mass is displaceable, deflectable or movable with respect to the electrode element. Moreover, the seismic mass and the electrode element form a capacitor having a capacitance which depends on a displacement between the seismic mass and the electrode element.
Abstract:
A capacitive microelectromechanical device is provided. The capacitive microelectromechanical device includes a semiconductor substrate, a support structure, an electrode element, a spring element, and a seismic mass. The support structure, for example, a pole, suspension or a post, is fixedly connected to the semiconductor substrate, which may comprise silicon. The electrode element is fixedly connected to the support structure. Moreover, the seismic mass is connected over the spring element to the support structure so that the seismic mass is displaceable, deflectable or movable with respect to the electrode element. Moreover, the seismic mass and the electrode element form a capacitor having a capacitance which depends on a displacement between the seismic mass and the electrode element.
Abstract:
An optical system and photo sensor pixel are provided. The photo sensor pixel includes a substrate including an active region and a peripheral region that is peripheral to the active region, an optical sensor disposed at the active region of the substrate and configured to receive light and output a measurement signal based on the received light, and an encapsulation layer disposed over the active region and the first peripheral region of the substrate. The encapsulation layer includes at least one subwavelength-based graded index structure provided over the peripheral region of the substrate, and the subwavelength-based graded index structure is configured to redirect the light from a region over the peripheral region onto the optical sensor.
Abstract:
A capacitive microelectromechanical device is provided. The capacitive microelectromechanical device includes a semiconductor substrate, a support structure, an electrode element, a spring element, and a seismic mass. The support structure, for example, a pole, suspension or a post, is fixedly connected to the semiconductor substrate, which may comprise silicon. The electrode element is fixedly connected to the support structure. Moreover, the seismic mass is connected over the spring element to the support structure so that the seismic mass is displaceable, deflectable or movable with respect to the electrode element. Moreover, the seismic mass and the electrode element form a capacitor having a capacitance which depends on a displacement between the seismic mass and the electrode element.