Abstract:
A frequency synthesizer comprising a first phase locked loop (PLL) circuit coupled to receive a reference frequency signal from a reference oscillator, the first PLL circuit comprising a first voltage controlled oscillator (VCO) having a bulk acoustic wave (BAW) resonator and a first fractional feedback divider circuit, the first PLL circuit outputting a first tuned frequency signal and a first plurality of integer divider circuits coupled to receive the first tuned frequency signal from the first PLL circuit and each of the first plurality of integer-only post-PLL divider circuits to provide one of a plurality of output frequency signals of the frequency synthesizer.
Abstract:
A fractional N-frequency divider having a reduced fractional spurious output signal, which utilizes a multi-modulus frequency divider and an accumulator to generate a calibration-timing window that is used to calibrate two oscillator circuits and a phase compensation circuit. The calibrated phase compensation circuit is then used to mitigate the fractional spurs in the output signal of the fractional N-frequency divider. The fractional N-frequency divider may be implemented into a fractional N-frequency synthesizer.
Abstract:
An integrated circuit comprising, a resonator, a first clock circuit for generating a first clock signal having a first frequency in response to the resonator, a second clock circuit for generating a second clock signal having a second frequency in response to the resonator, wherein the second frequency of the second clock signal is determined by the programmable frequency divider and a clock mode control circuit coupled to the first clock circuit and the second clock circuit, the clock mode control circuit for gradually switching the resonator between the first oscillator circuit and the second oscillator circuit of the integrated circuit, using a shift register based state machine and utilizing the inertia of the resonator to smoothly transition between the two oscillators, to provide a dual mode clock output signal.